
2 I E E E S O F T W A R E P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y 0 7 4 0 - 7 4 5 9 / 0 3 / $ 1 7 . 0 0 © 2 0 0 3 I E E E

W
andering down our corridor a while
ago, I saw my colleague Dave Rice
in a particularly grumpy mood. My
brief question caused a violent
statement, “We shouldn’t interview
anyone who has ‘architect’ on his

resume.” At first blush, this was an odd turn of
phrase, because we usually introduce Dave as

one of our leading architects.
The reason for his title schizo-

phrenia is the fact that, even by our
industry’s standards, “architect”
and “architecture” are terribly
overloaded words. For many, the
term “software architect” fits per-
fectly with the smug controlling im-
age at the end of Matrix Reloaded.
Yet even in firms that have the
greatest contempt for that image,
there’s a vital role for the technical

leadership that an architect such as Dave plays.

What is architecture?
When I was fretting over the title for Pat-

terns of Enterprise Application Architecture
(Addison-Wesley, 2002), everyone who re-
viewed it agreed that “architecture” belonged
in the title. Yet we all felt uncomfortable defin-
ing the word. Because it was my book, I felt
compelled to take a stab at defining it.

My first move was to avoid fuzziness by
just letting my cynicism hang right out. In a
sense, I define architecture as a word we use
when we want to talk about design but want
to puff it up to make it sound important. (Yes,
you can imagine a similar phenomenon for ar-

chitect.) However, as so often occurs, inside
the blighted cynicism is a pinch of truth. Un-
derstanding came to me after reading a posting
from Ralph Johnson on the Extreme Program-
ming mailing list. It’s so good I’ll quote it all.

A previous posting said

The RUP, working off the IEEE definition, defines
architecture as “the highest level concept of a sys-
tem in its environment. The architecture of a soft-
ware system (at a given point in time) is its orga-
nization or structure of significant components
interacting through interfaces, those components
being composed of successively smaller compo-
nents and interfaces.”

Johnson responded:

I was a reviewer on the IEEE standard that used
that, and I argued uselessly that this was clearly
a completely bogus definition. There is no high-
est level concept of a system. Customers have a
different concept than developers. Customers do
not care at all about the structure of significant
components. So, perhaps an architecture is the
highest level concept that developers have of a
system in its environment. Let’s forget the devel-
opers who just understand their little piece. Ar-
chitecture is the highest level concept of the ex-
pert developers. What makes a component
significant? It is significant because the expert
developers say so.

So, a better definition would be “In most successful
software projects, the expert developers working
on that project have a shared understanding of the

design

Who Needs an Architect?
Martin Fowler

E d i t o r : M a r t i n F o w l e r ■ T h o u g h t Wo r k s ■ f o w l e r @ a c m . o r g

J u l y / A u g u s t 2 0 0 3 I E E E S O F T W A R E 3

DESIGN

system design. This shared understanding
is called ‘architecture.’ This understanding
includes how the system is divided into
components and how the components in-
teract through interfaces. These compo-
nents are usually composed of smaller
components, but the architecture only in-
cludes the components and interfaces that
are understood by all the developers.”

This would be a better definition because
it makes clear that architecture is a so-
cial construct (well, software is too, but
architecture is even more so) because it
doesn’t just depend on the software, but
on what part of the software is consid-
ered important by group consensus.

There is another style of definition of ar-
chitecture which is something like “archi-
tecture is the set of design decisions that
must be made early in a project.” I com-
plain about that one, too, saying that ar-
chitecture is the decisions that you wish
you could get right early in a project, but
that you are not necessarily more likely to
get them right than any other.

Anyway, by this second definition, pro-
gramming language would be part of
the architecture for most projects. By the
first, it wouldn’t be.

Whether something is part of the architec-
ture is entirely based on whether the de-
velopers think it is important. People who
build “enterprise applications” tend to
think that persistence is crucial. When they
start to draw their architecture, they start
with three layers. They will mention “and
we use Oracle for our database and have
our own persistence layer to map objects
onto it.” But a medical imaging applica-
tion might include Oracle without it being
considered part of the architecture. That is
because most of the complication is in an-
alyzing the images, not in storing them.
Fetching and storing images is done by
one little part of the application and most
of the developers ignore it.

So, this makes it hard to tell people how
to describe their architecture. “Tell us
what is important.” Architecture is about
the important stuff. Whatever that is.

The architect’s role
So if architecture is the important

stuff, then the architect is the person (or
people) who worries about the impor-
tant stuff. And here we get to the
essence of the difference between the
Matrix Reloaded species of architect
and the style that Dave Rice exemplifies.

Architectus Reloadus is the person
who makes all the important decisions.
The architect does this because a single
mind is needed to ensure a system’s con-
ceptual integrity, and perhaps because
the architect doesn’t think that the team
members are sufficiently skilled to make
those decisions. Often, such decisions
must be made early on so that everyone
else has a plan to follow.

Architectus Oryzus is a different
kind of animal (if you can’t guess, try
www.nd.edu/~archives/latgramm.htm).
This kind of architect must be very
aware of what’s going on in the project,
looking out for important issues and
tackling them before they become a se-
rious problem. When I see an architect
like this, the most noticeable part of the
work is the intense collaboration. In the
morning, the architect programs with a
developer, trying to harvest some com-
mon locking code. In the afternoon, the
architect participates in a requirements
session, helping explain to the require-
ments people the technical conse-
quences of some of their ideas in non-
technical terms—such as development
costs.

In many ways, the most important
activity of Architectus Oryzus is to
mentor the development team, to raise

their level so that they can take on
more complex issues. Improving the
development team’s ability gives an ar-
chitect much greater leverage than be-
ing the sole decision maker and thus
running the risk of being an architec-
tural bottleneck. This leads to the satis-
fying rule of thumb that an architect’s
value is inversely proportional to the
number of decisions he or she makes.

At a recent ThoughtWorks retreat,
some colleagues and I were talking
about the issue of architects. I found it
interesting that we quickly agreed on the
nature of the job, following Architectus
Oryzus, but we could not easily find a
name. Architectus Reloadus is too com-
mon for us to be comfortable with “ar-
chitect,” and it’s based on a flawed
metaphor (see http://martinfowler.com/
bliki/BuildingArchitect.html). Mike Two
came up with the best name I’ve heard
so far: guide, as in mountaineering. A
guide is a more experienced and skillful
team member who teaches other team
members to better fend for themselves
yet is always there for the really tricky
stuff.

Getting rid of software
architecture

I love writing a startling heading, and
the best, like this one, have an impor-
tant meaning that’s not immediately ob-
vious. Remember Johnson’s secondary
definition: “Architecture is the decisions
that you wish you could get right early
in a project.” Why do people feel the
need to get some things right early in the
project? The answer, of course, is be-
cause they perceive those things as hard
to change. So you might end up defining
architecture as “things that people per-
ceive as hard to change.”

It’s commonly believed that if you
are building an enterprise application,
you must get the database schema right
early on because it’s hard to change the
database schema—particularly once
you have gone live. On one of our pro-
jects, the database administrator,
Pramod Sadalage, devised a system
that let us change the database schema
(and migrate the data) easily (see http://
martinfowler.com/articles/evodb.html).

What makes a
component significant?

It is significant
because the

expert developers
say so.

4 I E E E S O F T W A R E h t t p : / / c o m p u t e r. o r g / s o f t w a r e

DESIGN

By doing this, he made it so that the
database schema was no longer archi-
tectural. I see this as an entirely good
thing because it let us better handle
change.

At a fascinating talk at the XP 2002
conference (http://martinfowler.com/
articles/xp2002.html), Enrico Zani-
notto, an economist, analyzed the un-
derlying thinking behind agile ideas in
manufacturing and software develop-
ment. One aspect I found particularly
interesting was his comment that irre-
versibility was one of the prime drivers
of complexity. He saw agile methods, in
manufacturing and software develop-
ment, as a shift that seeks to contain
complexity by reducing irreversibility—
as opposed to tackling other complex-
ity drivers. I think that one of an archi-
tect’s most important tasks is to remove
architecture by finding ways to elimi-
nate irreversibility in software designs.

Here’s Johnson again, this time in
response to an email message I sent
him:

One of the differences between building
architecture and software architecture is
that a lot of decisions about a building
are hard to change. It is hard to go back
and change your basement, though it is
possible.

There is no theoretical reason that any-
thing is hard to change about software.
If you pick any one aspect of software
then you can make it easy to change,
but we don’t know how to make every-
thing easy to change. Making something
easy to change makes the overall system
a little more complex, and making
everything easy to change makes the en-
tire system very complex. Complexity is
what makes software hard to change.
That, and duplication.

My reservation of Aspect-Oriented Pro-
gramming is that we already have fairly
good techniques for separating aspects
of programs, and we don’t use them. I
don’t think the real problem will be
solved by making better techniques for
separating aspects. We don’t know what
should be the aspects that need separat-
ing, and we don’t know when it is worth
separating them and when it is not.

Software is not limited by physics, like
buildings are. It is limited by imagina-
tion, by design, by organization. In
short, it is limited by properties of peo-
ple, not by properties of the world. “We
have met the enemy, and he is us.”

Martin Fowler is the chief scientist for ThoughtWorks, and In-
ternet systems delivery and consulting company. Contact him at
fowler@acm.org.

