
1

On the Definition of Software System Architecture

Cristina Gacek

Ahmed Abd-Allah

Bradford Clark

Barry Boehm

Center for Software Engineering

University of Southern California

Los Angeles, CA, 90089-0781

ICSE 17 Software Architecture Workshop

April, 1995

Abstract

Although several defi nitions of “ software architecture” have been

presented, none of them to date enable a reviewer confronted with a

complex of diagrams and symbols to determine whether it is an

architecture for a system or not. We present a defi nition of “ soft-

ware system architecture” which provides a set of criteria for mak-

ing this determination. It is based on making the architectural

rationale a fi rst-class citizen in the defi nition, and on requiring the

rationale to ensure that the architecture’s components, connections,

and constraints defi ne a system that will satisfy a set of defi ned

stakeholder needs for the system.

1. Introduction

Intuitively people apply the general term architecture to the usage aspects

of the houses and other buildings they deal with, in terms of the nature of the phys-

ical structures and the physical arrangement of the structures in relation to each

other. Whereas this is the general individual perspective of architecture, there is

another very important one, that of the building architect. This perspective

involves the building architect’s need to produce a building which simultaneously

satisfi es a number of stakeholder needs involving shelter, light, heat, accessibility,

safety, aesthetics, maintainability, communication, etc. [Alexander 1964]. Other

important perspectives are those of building contractors, building inspectors,

safety engineers, or urban planners, each of whose missions rely on architectural

information.

Software architecture has been defi ned in various ways. It has been defi ned

as a structure composed of components, and rules characterizing the interaction of

these components [Jones 1993]. It has been defi ned as components, connections,

constraints and rationale [Boehm 1993]. It has also been defi ned as elements, form,

and rationale [Perry and Wolf 1992]; and as components, connectors, and confi gu-

rations [Garlan and Shaw 1993]. These defi nitions appear to focus on what can be



2

seen “ from the street,” or architectural representation, but it is not clear that they

fully address the full range of evaluation issues associated with a software archi-

tecture.

As a major example, a fundamental practical question involving software

architectures is: Does a given system under construction (e.g. the FAA Advanced

Automation System, the Denver Airport baggage handling system) have a soft-

ware architecture or not? Is any collection of diagrams and symbols an architec-

ture? Is it suffi cient (or necessary) for the collection to be syntactically consistent?

We claim that the candidate defi nitions above do not provide evaluators

with enough information to satisfactorily answer these questions. We further claim

that the following defi nition of a “ software system architecture” does provide the

requisite information.

A software system architecture comprises:

• A collection of software and system components, connections, and con-
straints.

• A collection of system stakeholders’ need statements.

• A rationale which demonstrates that the components, connections, and
constraints define a system that, if implemented, would satisfy the col-
lection of system stakeholders’ need statements.

This paper proceeds to elaborate this defi nition and its context.

In section 2 we discuss existing defi nitions of software architecture. In sec-

tion 3 we elaborate the stakeholder’s needs aspect of our defi nition of software

system architecture. In section 4 we discuss the critical role of the software sys-

tems architecture in the software process. In section 5 we discuss some implica-

tions of the nature of software architectural representations, particularly in

supporting the views necessary to represent a software system architecture. In sec-

tion 6 we present our conclusions.

2. Previous definitions

One of the earliest defi nitions of software architectures, by Perry and Wolf

[Perry and Wolf 1992], has remained one of the most insightful. After examining

the architectures of other disciplines (e.g. hardware, networks, and buildings),

Perry and Wolf describe a software architecture as “ a set of architectural (or, if you

will, design) elements that have a particular form.” The elements are divided into

three classes: processing elements, data elements, and connecting elements.

Whereas the processing and data elements have been studied extensively in the

past (e.g. functions and objects), it is the connecting elements that especially dis-

tinguish one architecture (or style) from another. The form of the architecture is

given by enumerating the properties of the different elements and the relationships

between the elements. Another essential part of the architecture is its rationale

which includes quality attribute aspects among other things.



3

Perry and Wolf also defi ne an architectural style as “ that which abstracts

elements and formal aspects from various specifi c architectures.” Thus, an archi-

tectural style consists of a set of shared assumptions and constraints across a set of

architectures. An architectural style is not an architecture; a point of confusion in a

number of presentations. The utility of a particular style comes from its addressing

important classes of design decisions up front, isolating and highlighting certain

aspects. A style or a specifi c architecture can be viewed in three different ways

based on the elements: a processing view, a data view, and a connections view. All

three views are necessary for the understanding of the style or architecture.

Another signifi cant defi nition of software architecture has been advanced

by Garlan and Shaw [Garlan and Shaw 1993]. It is more restrictive than the defi ni-

tion of Perry and Wolf. Garlan and Shaw proposed that a software architecture for

a specifi c system be captured as “ a collection of computational components - or

simply components - together with a description of the interactions between these

components - the connectors.” Based on this defi nition, the authors used the term

architectural style to denote a family of systems (architectures) that share a com-

mon vocabulary of components and connectors, and which meet a set of con-

straints for that style. The constraints can be on a variety of things, including on

the topology of connectors and components, or on the execution semantics.

To instantiate the concepts of architecture and style, Garlan and Shaw pre-

sented a valuable partial taxonomy of known architectural styles (see Table 1).

For each style, they asked questions designed to bring out its unique characteristics

such as “ What is the structural pattern of components and connectors?” and “ What

are some common examples of its use?” However , no particularly formal classifi -

cation of styles was presented.

It is important to note that quality attributes are not directly addressed by

the [Garlan and Shaw 1993] view of software architecture—in fact, the rationale

found in Perry and Wolf’s defi nition is entirely missing. The focus is also primarily

on the structure of the software, with little characterization of to the overall envi-

ronment in which the software operates.

Another source of software architecture defi nitions is the ARPA Domain

Specifi c Software Architecture (DSSA) program. While a general defi nition of

what is an architecture has been laid down, the exact form varies from project to

project within the DSSA program. In general, a software architecture is defi ned as

“ ...An abstract system specifi cation consisting primarily of func-

tional components described in terms of their behaviors and inter-

Pipes and Filters Layered Distributed

Object-Oriented Repositories Main program/subroutines

Event-Based Rule-Based State transition based

Domain-Specifi c Process Control (Feedback) Heterogeneous

Table 1: Some known architectural styles [Garlan and Shaw 1993]



4

faces and component-component interconnections. The

interconnections provide means by which components interact.

Architectures are usually associated with a rationale that documents

and justifi es constraints on component and interconnections or

explains assumptions about the technologies which will be avail-

able for implementing applications consistent with the architec-

ture.” [Hayes-Roth 1994]

A domain-specifi c software architecture, on the other hand, consists of a software

architecture as well as a domain model and a set of standardized requirements. The

DSSA defi nitions seem to combine aspects of Garlan/Shaw and Perry/Wolf, plus a

little extra in the case of a domain-specifi c architecture. Garlan and Shaw’s defi ni-

tion of architectural style has been more or less adopted within the DSSA program

[Tracz 1994].

In spite of their common defi nition, the different DSSA projects have

yielded architectures whose representations focus on different aspects of systems.

For example, the TRW/Stanford project has produced architectures expressed in

RAPIDE, an “ event-based concurrent, object-oriented language specifi cally

designed for prototyping system architectures.” [Luckham et al. 1994] The Honey-

well/Maryland project, on the other hand, has focused on and produced architec-

tures for intelligent guidance, navigation, and control (GNC) applications.

Consequently, their architectures are expressed in ControlH and MetaH, two lan-

guages that focus on GNC and scheduling issues respectively [Binns et al.]. A

third project from Teknowledge/Stanford has generated architectures for autono-

mous vehicles expressed in ArTek, yet another distinct language [Terry et al.

1993].

Some further defi nitional considerations resulted from a consensus reached

in the Process-sensitive SEE Architecture workshop held in 1992. There, Penedo

and Riddle included some architectural aspects which we believe the target defi ni-

tion should include [Penedo and Riddle 1993]. They concluded that an architecture

should be viewed and described from different perspectives, and should identify its

components, their static inter-relationship, their dynamic interactions, properties

and characteristics, and constraints on these items.

Although this defi nition is considerably richer than the ones previously dis-

cussed, it is too flexible on allowing for any kind of interpretation for “ properties

and characteristics”. It also lacks specifi city on determining what actually are the

different perspectives required for viewing the architecture.

3. Elaboration of “Software System Architecture” Definition

This section elaborates on the “ stakeholder needs” portion of the defi nition

of “ software system architecture” presented in Section 1. As with physical systems

such as buildings, different stakeholders in the software lifecycle take different

viewpoints when expressing their concerns about a software system. These view-

points reflect the stakeholders’ dif fering needs with respect to the software system

architecture. Given that stakeholders needs will vary from system to system, the



5

software system architecture’s emphasis will also vary from system to system.

3.1 Stakeholders and their Architecture Needs

Software architecture has a different meaning and use for different stake-

holders; see Table 2. The customer may expect at the architecting stage an estimate

of certain factors once the software structure has been defi ned. For example, the

customer is likely to be concerned with getting fi rst-order estimates of the cost,

reliability, and maintainability of the software based on its high-level structure.

This implies that the architecture should be strongly coupled with the require-

ments, indicating if it can meet them. Users need software architectures in order to

be able to clarify and negotiate their requirements for the software being devel-

oped, especially worrying about future extensions to the product. The user will be

interested at the architecting stage in the impact of the software structure on per-

formance, usability, and compliance with other system attribute requirements. As

with architectures of buildings, users also need to relate the architecture to their

usage scenarios.

Architects and Systems Engineers are concerned with translating require-

ments into high-level design. Therefore, they may use a software architecture for

clarifying and negotiating the requirements of the system. Developers are con-

cerned with getting an architectural specifi cation that is suffi cient in detail to sat-

isfy the customer’s requirements but not so constraining as to preclude equivalent

but different approaches or technologies in the implementation. Developers then

use the architecture as a reference for developing and assembling system compo-

Stakeholder Concern

Customer • Schedule and budget estimation

• Feasibility and risk assessment

• Requirements traceability

• Progress tracking

User • Consistency with requirements and usage scenarios

• Future requirement growth accommodation

• Performance, reliability, interoperability, etc.

Architect and

System Engineer

• Requirements traceability

• Support of tradeoff analyses

• Completeness, consistency of architecture

Developer • Suffi cient detail for design

• Reference for selecting / assembling components

• Maintain interoperability with existing systems

Maintainer • Guidance on software modifi cation

• Guidance on architecture evolution

• Maintain interoperability with existing systems

Table 2: Stakeholder Concerns



6

nents, and also use it to provide a compatibility check for reusing pre-existing

components. Interfacers use the software architecture as a basis for understanding

(and negotiating about) the product in order to keep it interoperable with existing

systems.

The maintainer will be concerned with how easy it will be to extend or

modify the software, given its high-level structure. Software Architecture provides

maintainers with a core structure to the software that should not be violated. It is

the most important aspect of the software which maintainers ought to maintain

with as few changes as possible at the architectural level, trying to restrict their

changes purely to the component level. In the inevitable case of product extension,

maintainers must attempt to extend the architecture in logical, reasonable ways. In

all cases, we would like as precise a representation as possible to express the

desired information. From the developer’s view (or architect’s view), this stage of

the lifecycle is where a formal, high-level description of the software structure is

given, both static (topological) and dynamic (behavioral). It is possible that other

types of descriptions may be given as well.

4. Role of the Software System Architecture in the Lifecycle Process

Using our defi nition, the Software System Architecture can serve as the

key milestone in the entire software life-cycle process. Until one has an architec-

ture whose rationale ensures that it will satisfy the needs of the system’s stakehold-

ers, it is very risky to proceed into full-scale system development and evolution.

Thus, the achievement of a Software System Architecture as defi ned here can and

should be used as the precondition for transitioning from an uncommitted require-

ments / architecture exploration stage into a full-scale development and evolution

stage based on a solid set of requirements / architecture commitments.

Before this milestone is reached the most effective process is generally a

risk-driven spiral process particularly its recent extension into the stakeholder win-

win spiral process [Boehm and Bose 1994]. As shown in Table 3, several (not nec-

essarily three) spiral cycles are used to converge on a compatible set of objectives,

constraints, and alternatives for the system’s life-cycle concept of operation,

requirements, architecture, and plans.. During this spiral process, these artifacts are

selected and grown in detail as risks are identifi ed and resolved, and interactions

among the artifacts are explored. Once such a Software System Architecture and

its associated artifacts are in place, the project can use a waterfall, spiral evolution-

ary, or other selected process to pursue the post-architecture full scale development

and evolution process

The Software System Architecture’s support of the needs of system engi-

neers, customers, developers, users, and maintainers, also implies that it is

involved in all phases of the software and system life-cycle; see Figure 1.

For example, design, code and unit test involve elaboration of the details

deferred by the risk-driven software system architecture specifi cation. Also, the

software system architecture provides a strong framework for software system



7

integration. This reduces risk and test time. Software architectures work out in

advance the major dependencies between system components. This provides a

consistency of form, and partitions the complexity. The architecture defi nes the

interfaces between components, and furthermore provides a basis for software

maintenance in order to prevent architectural erosion and drift [Perry and Wolf

1992]. Enough violations of the product’s original architecture eventually makes

maintenance diffi cult.

Whenever existing software has to be modifi ed, it must be understood fi rst

before non-destructive changes can be made. Currently, software understanding

consumes roughly 47% of the maintenance effort. The overall framework and its

rationale carried by the software architecture will serve to reduce this cost signifi -

cantly.

A software architecture should identify properties of components such as

hardware platform, implementation language, communication mechanism, cost,

and performance. It should be analyzable for quality, either by means of a formal

Cycle 1 Cycle 2 Cycle 3

Determination of top-level

concept of operations

Determination of detailed

concept of operations

Determination of IOC require-

ments, growth vector

System scope/ boundaries/

interfaces

Top-level HW, SW,

human requirements

Choice of life-cycle architec-

ture

Small number of candidate

architectures

Provisional choice of top-

level information architec-

ture

Some components of above

TBD (low-risk and/or deferra-

ble)

Top-level analysis support-

ing win-win satisfaction

More detailed analysis

supporting win-win satis-

faction

Thorough analysis supporting

win-win satisfaction

Table 3: Spiral Model Task Decisions

Code / Unit Test

Requirements

Design

Integration

Maintenance

Software System Architecture Specification

Figure 1. Lifecycle Involvement of Software System Architecture Specification



8

model or some other kind of representation or technique. Formal models also pro-

vide the basis for ways to verify an architecture, simulate its execution, enhancing

or facilitating the analysis of factors such as portability, scalability, performance,

robustness, and reusability.

Software architectures also facilitate the reengineering of legacy systems

and the identifi cation of components for reuse. The power of reuse is greater the

earlier it is done in the lifecycle. Since the architecting stage acts as a bridge

between requirements analysis and software design, it is clear that reuse at the

architectural level provides a tremendous amount of leverage for systems with

similar requirements.

5. Representing Software Architectures

Our defi nition of “ software system architecture” also implies that architec-

tural representation schemes need to represent and to support reasoning about an

architecture’s ability to support stakeholder needs. The architecture should be

comprised of alternate views, including at least a behavioral/operational view, a

static topological view, and a dataflow view. It is important to have formal archi-

tectural notation(s) that are capable of capturing not only these views, but also

other views that are concerned with other stakeholder needs. The notation also

needs to include attributes which support reasoning about the cost, performance,

reliability, portability, completeness, consistency and other stakeholder-critical

properties of the system represented by the architecture.

5.1 Notations

Formal methods and notations for software design have been shown to aid

the development of quality software. It is advantageous to use these techniques as

early in the life cycle as possible: in software architectures. Most work in this area

has focused on using formal methods to describe only the topological structure of

the software. For example, the Unix operating system can be described as a series

of concentric layers centered around the kernel, with each layer providing a differ-

ent virtual machine to the layer above. Another example is found in many embed-

ded controllers where the software is structured as a single main component which

receives inputs from (or is interrupted by) sensors, and which reacts by sending

outputs to actuators. In both examples we have only described, at a very high level,

the static topological structure of the software, ignoring other vital issues.

As systems grow in size and complexity, it becomes increasingly important

at the architecting stage to specify more than the topological structure of the prod-

uct. To understand what else to specify, we must turn to the stakeholders’ concerns

in Table 1. The different expectations of the various stakeholders make it clear that

a description of a software architecture must incorporate different, multiple “ view-

points”. A recent survey of some known architectural description notations show a

lack of support for some of these viewpoints; see Table 4 [Gacek et al. 1994]. Tra-

ditional defi nitions of software architecture have focused primarily on the devel-

oper’s viewpoint. This ignores other issues vital to other aspects of the lifecycle



9

such as the complexity of the algorithms, execution sequence, user interaction, and

resource constraints. Just as a program can be viewed from different perspectives,

the same with a software architecture. While the high-level representation of the

software structure is the cornerstone of the architecture, it is not suffi cient towards

guiding the quality development of systems, especially large systems. At the archi-

tecting stage, it is necessary for large systems to compare different software struc-

tures, weighing them against the different concerns of all the stakeholders

Given that multiple viewpoints must be supported in a full architectural

description and that most large systems are composites of different topological

structures, it is clear that a single formal notation or method for supporting these

viewpoints/structures will be formidable to construct. Additionally, formal models

of the architecture will not be suffi cient: certain system attributes may need to be

modelled in other ways, notably performance and usability (which are best

explored by prototyping). It is likely that a combination of formal notation and

informal prose is best suited to the architecting stage. In order to unite and relate

the developer’s formal, high-level software structure with the expectations of the

other stakeholders, an informal rationale is necessary. The rationale should explain

the reasoning behind the software structure, and show how it satisfi es the expecta-

tions of the customer, user, and maintainer. However, even the informal rationale

needs careful defi nition of terms and concepts, to avoid costly misunderstandings

among the stakeholders.

M
et

aH

C
o
n
tr

o
lH

D
IC

A
M

W
R

IG
H

T

U
N

IC
O

N

L
E

A
P

R
ap

id
e

U
N

A
S

(Z
)

Static structure (source topology)

Dynamic structure (behavior)

Dataflow

Domain-specifi c info

Domain-independence

Implementation-dependent info

Support formal analysis

Executable

Support reliability analysis

Cost

Formalize nonfunctional info

Table 4: ADL Support for Stakeholder Views



10

6. Conclusion

We have presented a definition of “ software system architecture” which

provides a set of criteria for determining whether a given complex of diagrams and

symbols is an architecture or not. It is based on making the architectural rationale a

first-class citizen in the definition, and on requiring the rationale to ensure that the

architecture’s components, connections, and constraints define a system that will

satisfy a set of defined stakeholder needs for the system.

This definition enables the existence of a software system architecture to

serve as the key milestone in the system’s lifecycle: the decision of whether or not

to proceed into full scale development and evolution of the system. For even mod-

erate size systems, if they do not have such an architecture, they should not be

built.

Such an architecture provides a process target for the early spiral cycles of

system definition, and a guiding framework for the remainder of the life cycle.

This definition of “ architecture” also has significant implications for architecture

definition languages, particularly on their need to support visualization of and rea-

soning about stakeholder concerns.

7. Bibliography

Alexander, C. (1964), Notes on the Synthesis of Form, Harvard University Press,

Cambridge, Ma, 1964.

Binns, P., Englehart M., Jackson M., and Vestal S., Domain-Specifi c Software

Architectures for Guidance, Navigation, and Control, Honeywell Technol-

ogy Center, Minneapolis, Mn. (available at ftp site honeywell.src.com)

Boehm, B.W. and P. Bose (1994), “ A collaborative Spiral Software Process Model

Based on Theory W,” Proceedings, ICSP 3, IEEE, Reston, Va. October

1994.

Boehm, B.W. and W. L. Scherlis (1992), “ Megaprogramming,”Proceedings of the

DARPA Software Technology Conference, April 1992. (available via USC

Center for Software Engineering, Los Angeles, CA, 90089-0781).

Factor, M., D. Gelernter, C. Kolb, P. Miller, D. Sittig (1991), “ Real-Time Data

Fusion in the Intensive Care Unit,” IEEE Computer , vol 24, no 11, Novem-

ber 1991, pp. 45-53.

Gacek, C., A. Abd-Allah, B.K. Clark, and B.W. Boehm (1994), “ Focused Work-

shop on Software Architectures: Issue Paper,” Proceedings of the USC-

CSE Focused Workshop on Software Architectures, June 1994.

Garlan, D. and M. Shaw (1993), “ An Introduction to Software Architecture”, in

Advances in Software Engineering and Knowledge Engineering, vol. 1,

World Scientific Publishing Company, 1993.



11

Hayes-Roth, F. (1994), Architecture-Based Acquisition and Development of Soft-

ware: Guidelines and Recommendations from the ARPA Domain-Specific

Software Architecture (DSSA) Program. Teknowledge Federal Systems.

Version 1.01, February 1994. (available from Teknowledge)

Jones, A. K. (1993), “The Maturing of Software Architecture,” Software Engineer-

ing Symposium, Software Engineering Institute, Pittsburgh, Pa., August

1994.

Kruchten, P. (1994), “An Architectural Model for Large-Scale, Distributed, Soft-

ware-Intensive Systems,” Proceedings of the USC-CSE Focused Workshop

on Software Architectures, June 1994.

Luckham, D., Augustin L., Kenney J., Vera J., Bryan D., and Mann W. (1994),

Specification and Analysis of System Architecture Using Rapide, 1994.

(available at ftp site anna.stanford.usc.edu)

Penedo, M. H., and W. Riddle (1993), “Process-sensitive SEE Architecture

(PSEEA)--Workshop Summary”, Software Engineering Notes, ACM SIG-

SOFT, vol. 18, no. 3, July 1993, pp. A78-A94.

Perry, D.E. and A. L. Wolf (1992), “Foundations for the Study of Software Archi-

tecture”, Software Engineering Notes, ACM SIGSOFT, vol. 17, no. 4,

October 1992, pp. 40-52.

Terry, A., G. Papanagopoulos, M. Devito, N. Coleman, and L. Erman (1993), An

Annotated Repository Schema, Teknowledge Federal Systems, Version 3.0,

Working Draft, October 1993.

Tracz, W. (1994), “Domain-Specific Software Architecture (DSSA) Frequently

Asked Questions (FAQ)”, Software Engineering Notes, ACM SIGSOFT,

vol. 19, no. 2, April 1994, pp. 52-56.


