
Overcoming the NAH Syndrome for Inspection Deployment

Pankaj Jalote
M. Haragopal

Infosys Technologies Limited
Electronics City

Bangalore - 561 229; India
91-80-852 0187

jalote@inf.com

ABSTRACT: Despite considerable evidence to show that
inspections can help reduce costs and improve quality,
inspections are not widely deployed in the software
industry. One of the likely reasons for this is the “not
applicable here (NAH)” syndrome - developers and
managers believe that in their environment, inspections will
not provide the benefits seen by other organizations. One of
the big challenges for deploying inspections is to overcome
this syndrome. In this report, we describe two experiments
that can be conducted, with little effort, in an organization
to obtain data from the organization to build a case for
inspections. By conducting one of these experiments, we
were able to effectively overcome the NAH syndrome in
our organization - many developers and managers are now
ready to try inspections in their projects. Though the
purpose of the experiment was to overcome the syndrome,
the data from the experiment, also shows how code
inspections compare with unit testing in terms of defect
detection capability, and the effebt of inspections on the
overall cost of development.

I INTRODUCTION
Inspections were introduced over two decades ago by M.
Fagan [Fag76, Fag86]. Since then, data has been collected
showing the benefits of inspections, both in quality and cost
[Rus91, Gil94, Gra94, Wel93]. Many experiments have
been conducted to study the effect of various factors on the

effectiveness of inspections (e.g. [Joh97, Por95, Por95a,
Por97, Sea97, Ste97] >. Different variations of the
inspection process have been proposed to make inspection
more effective (e.g. [Kni93, Mas93, Ste97, Vot931).
Experiments have also been conducted to study the use of
the Web technology for inspections [Per97]. The software
engineering and the process community is so convinced of
the benefits of inspections, that inspections are a part of the
Software Engineering Institute’s (SEI) capability maturity
model, CMM [Hum89, Pau93], in which they form a
separate Key Process Area (KPA). It is now widely
believed that inspection is one of the best technologies for
improving quality and reducing costs. Despite all this, and
the presence of many consultants trying to preach and
spread inspections among software developing
organizations, inspections are still not deployed in most of
the organizations. A report by the SE1 indicates that only
22% of the software organizations deploy some form of
inspections [Kit93].

So. the situation is that while software development
organizations are always in need for methods to improve
quality and productivity, and while much of the published
work about inspections claim that inspections improve both
quality and productivity, still inspections are not widely
deployed in software organizations. Why does this
seemingly paradoxical situation exist? Though there can be
many reasons for it, one likely reason is the “not applicable
here (NAH)” syndrome. That is, most organizations believe
that inspections are all right for IBM FSD, HP, or other
places, but it is not applicable in their context as their
business is different. In other words, people generally
believe the published data, but do not believe that in their
organization inspections will show results similar to the
ones found by others. The lurking suspicion is that (in their
context) inspections will only add to cost and will not show
sufficient reduction in downstream testing costs to have an
overall decreasing effect on cost.

371
O-8186-8368-6/98 $10.00 0 1998 IEEE

If inspections are to be deployed in an organization, then
the NAH syndrome has to be overcome - both the managers
and the developers have to be shown that even in their
context, inspections can provide benefits. By definition,
data from other organizations cannot be used to overcome
the NAH syndrome. The only way to overcome the NAH
syndrome is to get data from within the organization itself
to build a case for inspections. As the organization is not
deploying inspections, and people are not fully in favor of
inspection deployment, this data will have to be obtained
by conducting some limited experiments. For this, an
experimental setup is needed that can be quickly deployed
in real-life scenarios to evaluate the suitability of
inspections in the organization. In fairness, such an
experiment cannot be conducted to “prove that inspections
are useful” but to actually evaluate the suitability of
inspections as a technique to improve quality and/or
productivity.

In this report we describe two simple experiments that can
be used for this purpose. These experiments can be
performed in a short duration in an organization and the
data from the experiments can be used to evaluate the
suitability of inspections. If the data from the experiments
supports inspections, then the data from the experiments
can be used to evangelize inspections throughout the
organization. As the data is from within the organization,
and from actual projects, building a case using this data,
along with published data from other organizations across
the world, becomes a considerably simpler task. And for
the “doubting Tom?, such a case is much easier to accept.

We describe the experiments and our experience in using
one of them in our organization. Though the main purpose
of these experiments is to build a case for inspections in an
organization, the data from deploying the experiment in our
organization also gives a somewhat different and
interesting view of effectiveness of code inspections.

The paper is organized as follows. In the next section we
first give some general requirements for experiments that
are to be used for overcoming the NAH syndrome, and
propose two simple experiments for this purpose. Then we
describe how we conducted the first experiment in our
context, and present the data obtained during the
experiment. Then we briefly describe the effect on the
NAH syndrome of the experiment.

2 EXPERIMENT DESIGN
We decided to focus on code inspections as the coding
activity always has a formal output (i.e. code), coding is
something that developers relate to more, and coding is
usually the source of most number of errors. Historically
also, inspections started with code, and were later extended
to design, requirements, test plans, etc. Once a strong case
can be built for code inspections. and they can be deployed,

then the advantages from inspections will themselves build
a case for other inspections later on.

There are a few key requirements for any experiment that is
to be used to overcome the NAH syndrome. First, as
building a case is the main purpose of the experiment, it is
essential that the experiments be performed on real
projects from within the organization whose NAH
syndrome is being tackled, rather than on practice
exercises. Second, it is extremely important that
experiments are easy to execute (i.e. they do not consume
too much effort), otherwise finding volunteers will be hard.
Third, as the goal is to counter the psychology of the NAH
syndrome, a few data points may be enough to convince the
developers and managers, that inspections are a useful and
cost effective technique even in their context and that they
should at least be tried. That is, an elaborate multi-team,
multi-inspection experiment is not necessary to convince
people to start trying inspections in earnest. If this level of
conviction is reached, the war is almost won. Once people
try to use inspections in earnest, then they can determine
whether they are usefil or not. Getting people to try in
earnest is the hard part when NAH syndrome is at play.
Finally, the data from the experiment should clearly
quantify the effect on both quality and cost (i.e. effort), as
both are important in deciding the usefulness of a
technique.

In a typical software development process which does not
deploy inspections, before the coding activity starts, the
project is generally broken into “units”, which are
scheduled for coding. These units typically undergo some
unit testing, before they are put together to form a system
or a sub system. The system or the sub system then
undergoes testing of its own (integration testing, system
testing, etc.). If code inspections are deployed, generally a
piece of code is inspected before unit testing. That is, with
inspections, a unit will undergo inspections before unit
testing of that unit is done. Due to this, generally, another
step is added in the process. (Though there has been some
situations where inspections, when fully mature, replace
unit testing, in the start, the most likely scenario is that
inspection will be an additional step before unit testing).

Two major factors driving any project (and a software
organization) are cost (or effort) and quality. An
organization, or a team of people doing a project, will only
accept changes in processes if the changes can bring about
a reduction in total effort or can catch more defects (i.e.
fewer defects are present in the released software). And the
case is much stronger, if the change is beneficial for both
cost and quality. It is important to understand that
frequently effort is a much more powertil driving force in a
commercial software development setup and techniques
that increase quality at a substantial increase in cost are not

372

likely to be acceptable. Hence, if a case has to be built for
code inspections through experiments, the experiments
have to demonstrate a reduction in cost (without sacrificing
quality), or improvement in quality with minor increase in
cost. or that there is reduction in cost as well as
improvement in quality. Clearly, the last scenario is the one
that will build the strongest case.

2.1 Experiment 1
The purpose of the first experiment is to experimentally
demonstrate how inspection compares with unit testing, as
one of the main hindrances in accepting code inspection is
that “we have unit testing, so why do we need code
inspections: unit testing will catch all the defects inspection
can hope to find”. There are two objectives of this
experiment. First, to see how the defect detection
capabilities of unit testing and inspection compare with
each other in the context of the organization in which the
experiment is to be conducted. Second, to study the impact
of inspections on the overall cost of development. The
surest way to compare the defect detection capability of the
two approaches is to independently apply the two
techniques on the same code and then compare the defects
found by the two. This is what the experiment does. With
some data about downstream testing effort, this type of
experiment can also be used to study the effect on overall
effort. The basic experiment steps are shown in the flow
diagram shown in Figure I.

Program Units
oc=c1

Data for system
testing

Effectiveness
analysis

Figure I: Steps in Experiment I

For the experiment, first select a project that is reaching its
coding phase and whose members are willing to try the
experiment. Of course, a project will try an experiment
only if it does not add substantially to its (usually already
overloaded) work schedule. In the project, select some units
at random. It is desirable to select a few groups of 3-5 units
- then authors of code units in a group can form the
inspection team (this helps in motivation as an inspector is

not just inspecting someone else’s code - in return, his own
code also gets inspected).

For each unit, during the experiment, two independent
paths are followed. In one, the unit is inspected, and in the
other it is unit tested. Clearly, the people inspecting the
code, and the people doing the unit testing should be
different and should have no communication with each
other. One way to organize the inspections is to form an
inspection team of the authors of the code units in a group.
This team inspects all the units in the group. We have to
make sure that in each inspection, the author is not the
moderator or the paraphraser. If this approach is followed,
unit testing of the modulewill have to be done by someone
other than the author. In other words, for the experiment,
we need to have “independent unit testing”. For both the
paths, the effort spent, and the defects detected are
recorded. Defects can also be classified to understand the
impact of the nature of defects on the detectability of the
two techniques. As inspections are not being regularly
conducted in the organization, it is important to make sure
that people have been properly trained in inspection and
have done some exercises in inspection before they do the
actual experiment. There is no similar requirement for unit
testing as it is likely to be something people have
experience with.

If the sets of defects found by the two approaches are not
the same and one set is not a subset of the other, then we
can claim that inspections do indeed find a different set of
defects than unit testing. The nature and volume of these
defects are then used to determine if a sufftciently strong
case can be built for inspection as far as defect detection is
concerned. Defects detected per person-day, defects
detected per KLOC are other measures that can be used to
compare the two techniques in their defect detection
capability. In general, it should not be too hard to show that
strictly in terms of defect detection, adding inspections will
be beneficial and more defects will be caught by
introducing inspections.

Understanding the impact on cost is harder (and where
most doubts exist). For cost, we have to evaluate the effect
on overall cost of the project if inspections are introduced
as an extra step. This has to be estimated based on past data
for system testing. Suppose, for a unit, inspection finds m
defects, out of which n are ones that unit testing did not
find. The actual inspection cost has been recorded. Now,
we have to see how much cost saving will result by having
detected these n extra defects in inspection. One way to
estimate this is to assume that the defects that unit testing
did not detect but inspection did, will be detected and fixed
later during system and acceptance testing. By using the
average effort for defect fixing for the organization, or for
similar projects, we can estimate the saving that will be

373

achieved later during system testing. If inspection were
done before unit testing, then during unit testing, fewer
defects will be detected and fixed (with the same set of test
cases). Effect on reduction in unit testing cost can be
estimated by using the defect detection rate in unit testing
and the number of common defects that were found both by
inspections and unit testing. The sum of these two savings
is the estimated savings later in the process, if inspection is
used. This can be compared with the actual inspection
effort to see how much overall saving (or additional cost)
accrues by adding code inspections. This approach can be
generalized by assuming a distribution for detection of
defects found in inspection. but not in unit testing, among
later stages. and using the average cost of fixing a defect at
each stage.

It should be clear that this experiment is easy to conduct in
almost any situation. Furthermore, the cost is quite low -
the additional effort is the effort for conducting the
inspections on the chosen units (this effort also is not
strictly “additional” as it saves later testing costs and
detects extra defects), plus the cost of analysis (which does
not affect the project). The data from this experiment, if it
is favorable for inspections, should be sufficient to
convince developers and managers to at least start trying
inspections.

2.2 Experiment 2

The second experiment is also one that can be done on a
live project to study the impact of inspections on cost and
quality. Unlike the previous experiment, this has no
redundant activities and should actually reduce the overall
development cost of the project on which the experiment is
being executed. However, this experiment spans the entire
life cycle of the project and analysis can be done only after
the project is finished, unlike the previous experiment
where analysis can be done after the units have been
inspected and unit tested.

A project with multiple programming units is selected for
this experiment. After the design is done, and the
programming units defined, some units are chosen
randomly to undergo formal code inspection, followed by
unit testing. Other units follow the regular approach of
going through unit testing. The sizes of the units are also
recorded. During later testing stages (integration, system,
acceptance, etc.), the defects found are attributed to the
programming units in which they are found, and the total
effort in testing is recorded. Once the testing effort and
defect data is available, we can analyze the effect of
inspections on quality and cost.

The impact of inspection on quality can be easily
understood by looking at the defect rate (say, per KLOC)
during later testing phases for the units that were inspected

and the defect rate for the units that were not inspected. In
general, the data is likely to show that defect rates during
system testing and acceptance testing are lower in the
modules that have undergone inspection before unit testing.

The cost benefit analysis can be done as follows. We
allocate the effort in later testing stages (i.e. integration and
system testing) among units in the ratio of number of
defects attributed to the units. That is, we consider testing
(and debugging) as the activity that is done to identify and
remove defects, and assume that its effort increases in
proportion to the increase in the number of defects. Hence,
we attribute the later testing effort to the units in ratio of the
defects they contributed. This gives us the cost incurred in
later testing stages for a unit. More refined and elaborate
cost distribution models can be built, if needed. However,
this simple and “fair” cost allocation approach should serve
the purpose in most cases. The cost of unit testing of a unit
is already known. Hence, once the cost of system and
integration testing is distributed, we know the “total” cost
of downstream testing for each unit. The inspection cost for
units that underwent inspections is already known.

The basic case for inspection is that it catches defects early,
thereby reducing the costly testing and rework effort later.
And it is generally believed and said that the longer a
defect stays in the system, the more it costs to remove it.
That is why identifying and removing defects early is
considered advantageous. If this is true in this project, then
we should find that the cost of inspection is lesser than the
cost saved in defect removal in later testing stages. To
check the validity of this hypothesis and build a case for the
cost effectiveness of inspections, we find out the cost per
KLOC of all testing stages for units that were not inspected
and the cost per KLOC for the units that were inspected
using the approach mentioned above. As fewer defects are
likely to be found in later testing stages in units that were
inspected, the difference between the two testing costs (per
KLOC) will give us the cost savings achieved due to
inspections. This difference should be larger than the
inspection cost per KLOC, if inspections are indeed cost-
effective in this project. That is, if inspections are cost
effective, then the cost per KLOC for conducting
inspection and testing is lesser than cost per KLOC of
performing just testing without inspections. The actual data
about savings can then be used to build a case for
inspections and overcome the NAH syndrome.

3 DATA FROM DEPLOYMENT OF
EXPERIMENT
The banking unit of our organization has over 150 software
engineers and one major banking product that is
continuously upgraded to include new features. A typical
release cycle is of about 4 months duration. During

374

preparation of a release, two type of changes are done to
the software. One is to fix the defects found (in the field or
otherwise), that is. to fix the software trouble reports
(STRs). The other is to implement enhancements to the
product. called the software enhancement requests (SERs),
which are decided by the steering group giving direction to
the product.

It was noticed that during a development cycle, about 40%
of the effort was spent in implementing the STRs. That is,
the developers in the banking unit were spending 40% of
their time fixing defects that were introduced in previous
versions and were not removed. The need to improve
development of SERs was vep clear - if the
implementation of SERs was of high quality, there will be
fewer defects to fix in later releases.

The basic development process is very heavily coding and
testing oriented. SERs are assigned to developers, who
implement them and then do some self testing. Then they
are unit tested. Once all the SERs that had to be
implemented in a release are done. system testing is done
by the test group. After that the product is released to some
Beta sites.

It was clear to us that inspections have a great potential in
this context to reduce the number of defects we deliver.
However, as each development cycle was on a very tight
schedule, there was resistance in “adding” inspections as a
process step as it was feared it will add to cost without
substantially improving quality. And as perhaps in most
other organizations that do not deploy inspections,
published data from industry was viewed as “not applicable
here” or with some doubt and skepticism. In short, the
NAH syndrome was very much, present. It also became
clear to us that the main problem in deploying inspections
was not training of people but to counter this mind-set of
the NAH syndrome.

We decided to conduct experiment 1 first, as it can be
completed quickly. For the experiment. we selected 6 SERs
belonging to two different domains (the banking product
has been divided into about 8 domains). Six developers,
each with an experience of at-least 2 years, were assigned
one SER each. These six developers were first trained in
the inspection process, and for practice they were given the
implementation of one earlier SER which had some defects
seeded in it, to inspect. Once the developers were trained,
they were given the specifications of the SER assigned to
them. Each developer was assigned one SER to implement.
The set was divided into two groups of 3 each. Each group
formed an inspection team (the minimum size of an
inspection team can be 3).

Each developer was asked to implement the SER. compile
his code and do some self test. before submitting it. Once

submitted, as described earlier, it went through two
independent paths - inspections and unit testing. For
inspections, two groups of 3 inspectors was formed, each
consisting of authors of three SERs. During the experiment,
an inspection group inspected the code for the 3 SERs
developed by the members of the group. In each inspection,
it was made sure that the author is an inspector only and not
the moderator or the paraphraser. Standard forms were used
to collect defect and effort data for the individual
inspection as well as the inspection meeting. In parallel,
the SERs were unit tested independently by the module
leader for the domain to which the SER belonged. This
module leader was not in any inspection team and did not
interact with any of the inspectors. The sizes of the
different SERs, the total effort and the number of defects
found in the two paths the SER goes through are given in
Table I.

Table 1: Effort and Defect Data

It is clear from the table that through the inspection route,
more defects were detected as compared to the unit testing
route. And this was consistently true for all the SERs.
Overall, inspections caught about 2.5 times as many defects
as unit testing did. However, inspections also consumed
more effort as compared to testing, largely because
inspection is a group activity while unit testing is a one-
person activity. However, if we look at the number of
defects detected per person-hour, we see that inspection
and unit testing are similar - both detecting about 1.9
defects per person-hour. Now let us look at the nature of
the defects found by the two approaches. This is shown in
Table 2.

This data shows that almost in all categories inspections
caught more defects than unit testing, particularly for

375

categories which related to quality attributes like
“maintainability”, “portability”, etc., (this is to be expected
as testing generally focuses on errors in functionality).
However, the data also shows that even in logic and
interface defects (which unit testing focuses on),
inspections do better than unit testing. This data was an
eye-opener for many developers. They did not expect more
logic defects to be caught during inspections. From this
data, the case for adding inspections to improve the error
detection capability was abundantly clear and convincing.
The data further shows that the defects that were found
both by inspections and unit testing (i.e. the “common
defects”) are not too many - only a total of 12 defects were
common to both unit testing and inspections. This can be
used to strengthen the case that unit testing and inspections
are complementary and both should be deployed if defects
are to be caught early.

Defect Type Inspections Unit Common
Testing Defects

Data 3 I 0

Function 4 2 0

Interface 14 II I

Logic 12 5 4

Maintainability II 0 0

Portability 5 0 0

Others 5 I I

Total 54 20 12

Table 2: Defect Distribution

This data. along with the data about average cost of
identifying and fixing a defect in system testing, can be
used to do the cost analysis also. As the number of common
defects is low (which itself is a good enough reason to add
inspection as a step before unit testing), we assume that the
reduction in effort of unit testing due to inspection will be
minimal (this is the worst case for inspections). From past
experience and data we know that during system testing, it
takes about 4 person hours (about 8 times the per defect
cost of unit testing) to identify and remove a defect. And if
a defect goes past system testing, it takes about 2 person-
days (17 person hours) to identify and remove a defect
(this data is for identifying and fixing the defect and does
not include the fixed cost of testing).

Testing will generally not catch maintainability and
portability type defects. We assume that all the logic,
interface, function, and data defects that are not caught by

unit testing are caught later. The number of such defects
(after eliminating common defects, which are also caught
by unit testing) is 3 + 4 + (14 - 7) + (12 - 4) = 22.
Assuming that all the defects are caught in system testing,
from our data we can say that if no inspections are done,
then during system testing an additional 22 defects will
have to be detected and fixed. That is, the system testing
cost will increase by 22 * 4 = 88 hr, or about 1 I person-
days. This is the “most benign” case - the defects are
caught before the software is delivered. If we assume that
about 25% of these defects will slip by system testing and
will be caught later, the additional cost of system testing is
then 0.75 * 22 * 4 = 66 hr, or about 9.5 person days, and
additional cost of fixing defects found later is 0.25 * 22 * 2
= 11 person-days. That is, an additional 9.5 + 11 = 20.5
person-days be spent in fixing the extra defects, if no
inspections are done. In other words, the cost saving due to
inspections is 11 person days if all defects are caught in
system testing, and 20.5 person days if 25% of the defects
are not caught in system testing. And the cost of
inspections, due to which these savings have been obtained,
is about 3.5 person days. The case is very clear - if we
spend 1 additional day in code inspection, we can expect to
save about 3 - 6 days in defect fixing later in the
development cycle.

The computation above gives estimates only for direct
savings in testing and bug fixing in the later part of the
same development cycle. In addition to this, there are other
savings in the future (i.e. in later cycles) as inspections
catch other quality defects (e.g. maintainability, portability,
etc.). These may not immediately affect the working of the
software, but generally do add extra work in titure
development cycles when code has to be ported or changed.
However, we cannot quantify these benefits. These are
over-and-above the direct and immediate benefits in rework
that we can estimate. Of course, there are other long-term
benefits in terms of learning that comes from inspection
(developers inspecting others code learn from others;
developers having their code inspected learn to avoid
similar mistakes in future). This also we are not able to
quantify. However, just by the saving on testing effort,
which we can estimate, we can build a case for introducing
inspections.

4 IMPACT OF THE EXPERIMENT
We were able to conduct the experiment, whose data we
have given in the previous section, within two weeks. T’he
impact of the experiment was very substantial on the
organization. For some time the Software Engineering
Process Group (SEPG) has been trying to deploy formal
inspections in the organization. But, the resistance was
quite stiff. And in the banking unit, due to the schedule
pressure, developers were just not willing to believe that
examining code written by others in a structured manner

376

can help identify more defects and help save costs.

With the results of the experiment. a sea change has come
in the scene. The results of the experiment were enough to
convince developers and managers alike that inspections
need to be tried. The data from the experiment also
indicated that the benefits of inspections are lesser if the
code is simple or small (in smaller size SERs, the benefit
was not much). Using this. a policy decision was taken to
classify the SERs in three categories - simple, medium, and
complex, and consider formal inspections for all the
complex modules.

So, overall, the climate for inspections changed
considerably when the data from the inspections was
presented to the developers and managers. The NAH
syndrome was successfully overcome!

To push inspections further, a working group was formed
to look at suitability of inspections in other service oriented
projects. In the training module that is being used for the
rest of the organization, this is the main case study we
present. Again. once the case study is presented by people
who were part of the study, the acceptance is generally very
high and the questions regarding the nature of the project,
schedule pressure, capability of people, etc., which are
generally used to doubt data from other organizations, are
not raised.

Overall, the effect of the experiment has been very positive
in countering the NAH syndrome. The experiment has fully
achieved its purpose. Now, the SEPG, and the working
group for peer reviews, are tackling the main problem of
how to train people and how to institute inspections on a
company-wide scale, when a host of logistic issues also
come up. In other words, now these groups are tackling the
technical and logistic issues relating to inspections and not
fighting a psychological battle against closed minds. Within
a three month period the large banking unit has moved
from no inspections to wanting to inspect all complex
modules. And this change has not come in a top-down
manner. Rather there is a general acceptance by the
developers to use inspections. This is a big help when
deploying inspections - they don’t have to be forced upon
people, but the people are ready to employ them. Only the
necessary changes have to be made to policies and
processes, and relevant training has to be given.

5 CONCLUSIONS
Software inspections were proposed two decades ago.
Since then, a wealth of information has been collected
about effectiveness of inspections in improving quality and
reducing cost. Despite the presence of over two decades of
positive experience, inspections are not widely used in the
software industry. A likely reason’behind this resistance to
deploy inspections is the “not applicable here (NAH)”

syndrome - developers and managers of a company
frequently feel that though inspections may be useful in
some other organization’s context, they are not suitable for
their context. The basic suspicion is that in their context
inspections will add to cost by adding another step in the
process.

If inspections have to be deployed in an organization, then
this NAH syndrome has to be overcome. The basis of the
existence of the NAH syndrome is lack of data from within
the organization. Hence, to overcome this, some data from
within the organization has to be obtained. The best way of
getting this data is to conduct some limited experiments on
real-life projects in the organization and then use the data
from the experiments to build a case for inspections. As
people in the organization are skeptical about inspections, it
is important that the experiments be such that they are easy
to conduct, do not consume too much effort, and clearly
show the effect of inspections on both cost and quality.

In this paper we have proposed two simple experiments,
data from which can be used to build a case to tight the
NAH syndrome. In the first experiment, some units of a
project go through two independent paths - in one, the units
are inspected and in the other they are unit tested. This
experiment can be used to compare the effectiveness of unit
testing and inspections. If inspections can be shown to
catch different defects than unit testing, then it can be
argued that having inspections will help improve quality.
The effect on overall cost of the project can also be
estimated through this experiment, if the average cost of
removing a defect in later testing stages is known. In the
second experiment, some units of a project are randomly
selected. These units undergo inspections, while the rest of
them don’t. The defects found in the later testing stages are
attributed to the units. Using effort data, cost per KLOC of
testing and defect fixing for units that were unit tested and
units that were also inspected can be determined. This can
then be used to understand the impact of inspections on
overall development cost. The first experiment can be
conducted in a short duration, but may have some extra
overhead. The second experiment does not have any
redundant activities (i.e. which do not directly contribute to
the project), but the experiment is completed only after the
project finishes.

We conducted the first experiment in our Banking unit. We
selected 6 program units to undergo the two paths. The data
clearly showed that inspections found more defects than
unit testing for each of the unit. Overall, inspections found
about 2.5 times the number of defects that unit testing did.
However, inspections also consumed about 2.5 times more
effort than unit testing. The nature of defects showed that
inspections found more defects in all defect categories,
including logic, data, and interface, and found a lot more

377

defects in other areas like maintainability, portability, etc.
The number of common defects were also small. That is,
the number of defects found both by unit testing and
inspections were not large. This clearly showed that the two
approaches are actually complementary. Using the average
cost of defect identification and removal in system testing
and assuming that most of the defects that inspections
found but unit testing did not will be found in system
testing. we did the cost effectiveness analysis. The analysis
showed that for each day spent in inspections, we saved 3-6
days of effort in defect removal after system testing.

Overall. the impact of the data on the developers and
managers was tremendous. A sea. change has occurred in
the attitude of people. And now. in the banking group, a
policy of inspecting all complex units is being considered.
So, in a few months, from resistance to inspections we have
been able to take the unit to a stage where they are excited
about inspections and are formulating policies for
inspections. The effect has been very positive on the rest of
the organization also, and many groups now want to try
inspections. In the training we give for inspections, the data
from the experiments form the main “selling point”, and it
does a good job of selling inspections.

We are currently planning to execute the second
experiment also to better understand the impact of
inspections on quality and cost on different type of units.
Experiments are also being conducted in other parts of our
organization to study the effectiveness in their context and
on different work products. We believe that such
experiments can become an invaluable tool in the SEPG of
an organization.

6 REFERENCES
[Fag761 M. E. Fagan, “Design and code inspections to
reduce errors in program development”, IBM System
Journal, (3): 182-2 1 I, 1976.

[Fag861 M. E. Fagan, “Advances in software inspections”,
IEEE Transactions on Sofiare Engineering, SE-12 (7):
744-75 1, July 1986.

[Gil941 T. Gilb and D. Graham, Sojiwure Inspections,
Addison-Wesley, 1994.

[Gra94] R. B. Grady and T. V. Slack, “Key lessons learned
in achieving widespread inspection use”, IEEE Sofiare,
pp. 48-57, July 1994.

[Hum891 W. E. Humphrey, Managing the sojiiure
process, Addison-Wesley, 1989.

[Joh97] P. M. Johnson and D. Tjahjono, “Assessing
software review meetings: a controlled experimental study
using CSRS”, Proc. 19th Int. Conf on Software Engg., pp.
I 18, 127, Boston, 1997.

[Kitt93] D. H. Kitson and S. M. Masters, “An analysis of
SE1 software process assessment results: 1987- 1991”, Proc.
1Sth Int. Conference on Sojivare Engineering, Baltimore,
Maryland, 1993, pp. 68-77.

[Kni93] J. C. Knight and E. A. Myers, “An improved
inspection technique”, Communications of the ACM, Vol
36:I 1, pp. 51-61, Nov. 1993.

[Mas93] V. Mashayekhi et. al., “Distributed collaborative
software inspection”, IEEE Sofnyae, pp. 66-75,
September 1993.

[Pau93] M. C. Paulk et. al., Capability maturity model for
software, version I. 1, Technical Report ESC-TR-93- 177,
Software Engineering Institute, Carnegie Mellon
University, Pittsburgh, Feb 1993.

[Per971 J. M. Perpich et. al., “Anywhere, anytime code
inspections: using the web to remove inspection
bottlenecks in large-scale software development”,
Proceedings of 19th Int. Conf: on Sofmare Engg., pp. l4-
21, Boston, 1997.

[Por95] A. Porter, L. Votta, and V. Basili, “Comparing
detection methods for software requirements inspections: a
replicated experiment”, IEEE Tran. on Sofhyare Engg.,
21(6), June 1995.

[Por95a] A. Porter, L. G. Votta, H. P. Siy, C. A. Toman,
“An experiment to assess the cost-benefits of code
inspections in large scale software development” Third
Symp. on the Foundations of Sw. Engg., Washington, DC,
Oct. 1995.

[Por97] A. A. Porter, H. P. Siy and L. G. Votta,
“Understanding the effects of developer activities on
inspection interval”, Proc. 19th Int. Conj: on Software
Engg., pp. 128-138, Boston, 1997.

[Rus91] G. W. Russell, “Experience with inspection in
ultralarge scale developments”, IEEE Sofhvare, Jan. 199 1.

[Sea971 C. B. Seaman and V. R. Basili, “An empirical
study of communication in code inspections”, Proc. 19th
Int. Conf: on Software Engg., pp. 96- 106, Boston, 1997.

[Ste97] M. Stein et. al., “A case study of distributed,
asynchronous software inspections”, Proc. 19th Int. Conf:
on Software Engg., pp. 107-l 17, Boston, 1997.

[Vot93] L. G. Votta, “Does every inspection need a
meeting?“, Proc. of the ACM SIGSOFT Symp. on
Foundations of Sofhvare Engg, Dec. 1993.

[We1931 E. F. Weller, “Lessons learned from three years of
inspection data”, IEEE Sofmare, pp. 38-53, Sept. 1993.

378

