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FOREWORD

The Software Engineering Laboratory (SEL) is an organization sponsored by the National
Aeronautics and Space Administration/Goddard Space Flight Center (NASA/GSFC) and created for
the purpose of investigating the effectiveness of software engineering technologies when applied to
the development of applications software.  The SEL was created in 1977 and has three primary
organizational members: NASA/GSFC, Systems Development Branch; University of Maryland,
Computer Sciences Department; Computer Sciences Corporation, Flight Dynamics Technology
Group.

The goals of the SEL are (1) to understand the software development process in the GSFC
environment; (2) to measure the effect of various methodologies, tools, and models on this process;
and (3) to identify and then to apply successful development practices.  The activities, findings, and
recommendations of the SEL are recorded in the Software Engineering Laboratory Series, a
continuing series of reports that includes this document.

The Manager's Handbook for Software Development was originally published in April 1984.
Contributors to the original version included

William Agresti, Computer Sciences Corporation
Frank McGarry, Goddard Space Flight Center
David Card, Computer Sciences Corporation
Jerry Page, Computer Sciences Corporation
Victor Church, Computer Sciences Corporation
Roger Werking, Goddard Space Flight Center

The new edition contains updated material and constitutes a major revision.  The primary
contributors to the current edition are

Linda Landis, Editor, Computer Sciences Corporation
Frank McGarry, Goddard Space Flight Center
Sharon Waligora, Computer Sciences Corporation
Rose Pajerski, Goddard Space Flight Center
Mike Stark, Goddard Space Flight Center
Rush Kester, Computer Sciences Corporation
Tim McDermott, Computer Sciences Corporation
John Miller, Computer Sciences Corporation

Single copies of this document can be obtained by writing to

Systems Development Branch
Code 552
Goddard Space Flight Center
Greenbelt, Maryland 20771
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ABSTRACT

Methods and aids for the management of software development projects are presented.  The
recommendations are based on analyses and experiences of the Software Engineering Laboratory
(SEL) with flight dynamics software development.  The management aspects of the following
subjects are described:  organizing the project, producing a development plan, estimating costs,
scheduling, staffing, preparing deliverable documents, using management tools, monitoring the
project, conducting reviews, auditing, testing, and certifying.
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SECTION 1 — INTRODUCTION

This handbook is intended to be a convenient reference on software management methods and aids.
The approach is to offer concise information describing

• What the methods and aids can accomplish
• When they can be applied
• How they are applied
• Where the manager can find more background or explanatory material

The management methods and aids included here are those that have proved effective in the
experiences of the Software Engineering Laboratory (SEL) (Reference 1).  The characteristics of
software projects in the flight dynamics environment monitored by the SEL appear in the appendix
to this document.  The applications include attitude determination and control, orbit adjustment,
maneuver planning, and general mission analysis.

HANDBOOK OVERVIEW

This document consists of seven sections organized by specific management topics:

Section 1 presents the handbook's purpose, organization, and intended audience.  The software
life cycle and key development activities are summarized.

Section 2 discusses the basic management concerns of organizing and planning in the context of
software management.  The production of the software development management plan is covered in
detail.

Section 3 describes resource estimation and allocation.  Techniques are presented for estimating
size, costs, and effort.  Guidelines are given for project scheduling and for staff allocation and
composition.

Section 4 outlines contents, timing, and evaluation of key documents and deliverables in a software
project.

Section 5 discusses the management aspects of software verification, testing, and certification.

Section 6 summarizes management measures and aids used in monitoring and controlling a
software project.  Key indicators of progress are listed along with warning signals and corresponding
corrective measures.

Section 7 presents both the general function of project reviews and the specific implementation of
the five major reviews.  Guidelines for auditing a project are also introduced.

An appendix, glossary, references, and a bibliography of SEL literature conclude the
handbook.
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INTENDED AUDIENCE

The intended audience of this document is the software manager, who, as defined in this handbook,
serves as either an administrative or technical manager.  The positions overlap somewhat in their
information needs.

The administrative manager has overall responsibility for developing software that meets
requirements and is delivered on time and within budget.  In the SEL environment, a Government
Technical Officer or Assistant Technical Representative (ATR) generally serves in this capacity.
Typically, this manager is not involved with the day-to-day technical supervision of the programmers
and analysts who are developing the software.  The administrative manager will be involved in the
activities listed below; the corresponding handbook sections are listed alongside.

• Organizing the project Section 2
• Estimating resources required Section 3
• Estimating costs Section 3
• Evaluating documents and deliverables Section 4
• Monitoring progress Section 6
• Evaluating results of reviews and audits Section 7
• Certifying the final product Section 5

The technical manager is responsible for direct supervision of the developers.  The position is
frequently filled by a contractor manager in the SEL environment; although, on some projects, a
Government manager will fill this role instead.  This person shares some of the activities listed for the
administrative manager, especially with regard to monitoring development progress.  The technical
manager's activities and the corresponding handbook references are presented below.

• Producing and executing the software 
development/management plan Section 2

• Estimating costs Section 3
• Scheduling the project Section 3
• Staffing the project Section 3
• Directing the production of documents

and deliverables Section 4
• Using automated management aids Section 6
• Monitoring development progress Section 6
• Supervising technical staff Section 6
• Ensuring software quality Section 5
• Preparing for reviews Section 7

A secondary audience for the handbook consists of those who serve a particular peripheral function
but do not act in either of the two managerial capacities.  Two examples of such specific functions are
participating as an external reviewer at a scheduled review and conducting an audit of the project.

Government managers should note that there is no identifiable conflict between the material
presented in this handbook and major NASA/GSFC standards.
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SOFTWARE LIFE CYCLE
The process of software development is often modeled as a series of stages that define the software
life cycle.  In the flight dynamics environment, the life cycle is defined by the following phases:

• Requirements definition
• Requirements analysis
• Preliminary design
• Detailed design
• lmplementation
• System testing
• Acceptance testing
• Maintenance and operation

As shown in Figure 1-1, the phases divide the software life cycle into sequential time periods that do
not overlap.  However, the activities characteristic of one phase may be performed in other phases.
For example, although most of the staff effort in analyzing requirements occurs during the
requirements analysis phase, some of that activity continues at lower levels in later phases.
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Figure 1-1.  Activities by Percentage of Total Development Staff Effort

Example:   At the end of the implementation phase (4th dashed line), approximately 46% of the
staff are involved in system testing;  approximately 15% are preparing for acceptance testing;
approximately 7% are addressing requirements changes or problems; approximately 12% are
designing modifications; and approximately 20% are coding, code reading, unit testing, and
integrating changes.  Data are shown only for the phases of the software life cycle for which the
SEL has a representative sample.
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The life cycle phases are important reference points for the software manager.  For example, in
monitoring a project, the manager may find that the key indicators of project condition at one phase
are not available at other phases.  Milestones in the progress of a software project are keyed to the
reviews, documents, and deliverables that mark the transitions between phases.  Management aids and
resource estimates can be applied only at certain phases because their use depends on the availability
of specific information.

In the requirements definition phase, a working group of analysts and developers identifies
previously developed subsystems that can be reused on the current project and submits a reuse
proposal.  Guided by this proposal , a requirements definition team prepares the requirements
document and completes a draft of the functional specifications for the system.  The conclusion of
this phase is marked by the system requirements review (SRR) at which the requirements for the
system are evaluated.

During the next phase, requirements analysis, the development team classifies each specification and
performs functional or object-oriented analysis.  Working with the requirements definition team,
developers resolve ambiguities, discrepancies, and to-be-determined (TBD) specifications, producing
a final version of the functional specifications document and a requirements analysis report.  This
phase is concluded with a software specifications review (SSR) at which the results of the analysis are
presented for evaluation.

The baselined functional specifications form a contract between the requirements definition team and
the software development team and are the starting point for preliminary design.  During this third
phase, members of the development team produce a preliminary design report  in which they define
the software system architecture and specify the major subsystems, input/output (I/O) interfaces, and
processing modes.  The preliminary design review (PDR), conducted at the end of this phase,
provides an opportunity for evaluating the design presented by the development team.

In the fourth phase, detailed design, the system architecture defined during the previous phase is
elaborated in successively greater detail, to the level of subroutines.  The development team fully
describes user input, system output, I/O files, and intermodule interfaces.  An implementation plan is
produced, describing a series of builds and releases that culminate with the delivered software system.
The corresponding documentation, including complete baseline diagrams, makes up the detailed
design document.  At the critical design review (CDR), the detailed design is evaluated to determine if
the levels of detail and completeness are sufficient for coding to begin.

During the implementation (code, unit testing, and integration) phase, the development team codes
the required modules using the detailed design document.  The system grows as new modules are
coded, tested, and integrated.  The developers also revise and test reused modules and integrate them
into the evolving system.  Implementation is complete when all code is integrated and when
supporting documents (system test plan and draft user's guide) are written.

The sixth phase, system testing, involves the functional testing of the end-to-end system capabilities
according to the system test plan.  The development team validates the completely integrated system
and produces a preliminary system description document.  Successful completion of the tests required
by the system test plan marks the end of this phase.

During the seventh phase, acceptance testing, an acceptance test team that is independent of the
software development team examines the completed system to determine if the original requirements
have been met.  Acceptance testing is complete when all tests specified in the acceptance test plan
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have been run successfully.  Final versions of the user's guide and system description are published,
and an operational readiness review (ORR) is conducted to evaluate the system's readiness to begin
operational support.

The eighth and final phase, maintenance and operation, begins when acceptance testing ends.  The
system becomes the responsibility of the maintenance and operation group.  The nature and extent of
activity during this phase depends on the type of software developed.  For some support software, the
maintenance and operation phase may be very active due to the changing needs of the users.

ACTIVITIES SPANNING PHASES

In the flight dynamics environment, reuse and prototyping are key activities in several phases of the
life cycle.

In the requirements definition and requirements analysis phases, reuse analysis is performed to
determine which major segments (subsystems) of existing software can be utilized in the system to be
developed.  In the design phases, developers conduct a verification of this analysis by examining
each reusable element individually.  During the preliminary design phase, developers study major
components  to determine if they can be reused verbatim or modified.  Extraction of individual units
from a reusable software library (RSL) is conducted during the detailed design phase.  A final reuse
activity occurs at the end of the system test phase, at which time developers select pieces of the
developed software as candidates for inclusion in the RSL.

Prototyping activities are usually begun during requirements analysis and completed by the end of
detailed design.  A protoype is an early experimental model of a system, system component, or
system function that contains enough capabilities for it to be used to establish or refine requirements
or to validate critical design concepts.  In the flight dynamics environment, prototypes are generally
used to mitigate risks by resolving unknowns related to new technology.

Figure 1-2 shows the span of these two categories of activity in the SEL environment.
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Figure 1-2.  Reuse and Prototyping Activities Within the Life Cycle

The management methods and aids in this handbook are associated with the phases from
requirements definition through acceptance testing.  Reference 2 contains a more detailed
explanation of life cycle phases and activities.
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SECTION 2 — ORGANIZING AND PLANNING

The key to successful software management is to generate a realistic, usable plan and then follow
it.  The critical early stages of organizing and planning lay the foundation for effective project
management  and control.

ORGANIZING THE PROJECT

To get started, the manager must gain a clear understanding of the scope of the project and must
establish the basis for control.  The major initial concerns relate to clarifying the requirements, the
deliverables, and the organizational framework.  By addressing the four sets of questions below,
the manager will acquire an understanding of the key elements that will affect project planning.

Identifying the Requirements

What functions must the system perform?
How will the system be operated?
Are the boundaries of the system visible?
In what form does the job definition exist?
Is the current job definition understandable?
Does the project depend on external events or activities?

Identifying the Products and Deliverables

What documents, programs, and files are specified as deliverable products?
When must they be delivered?
In what form are the deliverables, e.g., draft copies or on tape?
Who will receive the deliverables and accept the final product?
What criteria will be used to judge the acceptability of the final product?

Preparing for Control

Is there a timetable for periodic reporting of project status?
What is the procedure for incorporating requirements changes that affect the scope of the

work?
What reviews will be necessary to mark the transitions between phases?
Are there technical or managerial risks to successful completion of the project?
What measures will be used to assess project health?

Establishing an Organizational Identity

Who will be the key contact people from the customer, developer, and support groups?
Do the different groups understand their areas of project responsibility?
Where will the development work be done?
Which development computers will be used?
What level of access to the computers will be required?



2-2

PRODUCING THE SOFTWARE DEVELOPMENT/MANAGEMENT PLAN
In many environments, the software management plan and the software development plan are
separate policy documents with different orientations. The management plan is directed toward the
broader aspects of administration and control, e.g., project-level monitoring of resource
expenditures and the functioning of the configuration control board (CCB). The development
plan focuses more on methods and approaches to software production, e.g., testing strategies and
programming methodologies.  Although these differences exist between the two plans, there is
generally some material in common.

ln the flight dynamics environment of the SEL, the two plans are combined into a single
document, the software development/management plan.  Although the remainder of this section
describes the contents of a single combined plan, the reader is encouraged to separate the contents
into two plans if that is more appropriate to the needs of his/her environment.  In either case, the
items in this section must be formally addressed for a project to be successful.

The software development/management plan provides a disciplined approach to organizing and
managing the software project. A successful plan serves as

• A structured checklist of important questions
• Consistent documentation for project organization
• A baseline reference with which to compare actual project performance and experiences
• A detailed clarification of the management approach to be used

By completing the plan early in the life cycle, the manager becomes familiar with the essential
steps of organizing the development effort:

• Estimating resources
• Establishing schedules
• Assembling a staff
• Setting milestones

The plan should concentrate on information that is unique or tailored to the project at hand.  If
standard policies, guidelines, or procedures will be applied to an aspect of the project, the plan
should reference the documents in which these are defined rather than restating them in detail.
Writing the plan can begin as soon as any information about the project definition and scope
becomes available.  The plan should be completed by the end of the requirements analysis phase,
except for information available only at later phases.  If items in the software development/
management plan are missing for any reason, the manager should indicate who will supply the
information and when it will be supplied.

Copies of the plan should be provided to all levels of project management and the project's
technical staff.

Figure 2-l presents the suggested format and contents for the software development/management
plan, including several references to sections of this handbook for detailed descriptions.  The
format is intended as a guide.  Depending on the application environment, a different arrangement
of items or the addition of new material may be appropriate.
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SOFTWARE DEVELOPMENT/MANAGEMENT PLAN
Sections in italics describe material that is to be regularly added to the plan during the life of the

project.  Other sections should be revised and reissued if circumstances require significant changes in

approach.

TITLE PAGE — document number, project and task names, report title, and report date.

LEAD SHEET — document identification numbers, project and task names, report title, customer

name, preparers, contract and task identifiers, and report date.

TABLE OF CONTENTS — list of subsection titles and page numbers.

1. INTRODUCTION
1.1 Purpose — brief statement of the project's purpose.

1.2 Background — brief description that shows where the software products produced 

by the project fit in the overall system.

1.3 Organization and Responsibilities
1.3.1  Project Personnel — explanation and diagram of how the development team

will organize activities and personnel to carry out the project: types and numbers 

of personnel assigned, reporting relationships, and team members' authorities and 

responsibilities (see Section 3 for guidelines on team composition).

1.3.2  Interfacing Groups — list of interfacing groups, points of contact, and group 

responsibilities.

 2. STATEMENT OF PROBLEM — brief elaboration of the key requirements, the steps to 

be done, the steps (numbered) necessary to do it, and the relation (if any) to other 

projects.

3. TECHNICAL APPROACH
3.1 Reuse Strategy — description of the current plan for reusing software from 

existing systems.

3.2 Assumptions and Constraints — that govern the manner in which the work 

will be performed.

3.3 Anticipated and Unresolved Problems — that may affect the work and the 

expected effect on each phase.

3.4 Development Environment — target development machine and programming 

languages.

3.5 Activities, Tools, and Products — for each phase, a matrix showing:  a) the 

major activities to be performed, b) the development methodologies and tools to be 

applied, and c) the products of the phase (see Section 4).  Includes discussion of 

any unique approaches or activities.

3.6 Build Strategy — what portions of the system will be implemented in which 

builds and the rationale.  Updated at the end of detailed design and after each build.

4. MANAGEMENT APPROACH
4.1 Assumptions and Constraints — that affect the management approach, 

including project priorities.

4.2 Resource Requirements — tabular lists of estimated levels of resources 

required, including estimates of system size (new and reused LOC and modules), staff 

effort (managerial, programmer, and support) by phase, training requirements, and 

computer resources (see Section 3).  Includes estimation methods or rationale used.  

Updated estimates are added at the end of each phase.

Figure 2-1. Software Development/Management Plan Contents (1 of 2)
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4.3 Milestones and Schedules — list of work to be done, who will do it, and when it 
will be completed.  Includes development life cycle (phase start and finish dates); 
build/release dates; delivery dates of required external interfaces; schedule for 
integration of externally developed software and hardware; list of data, information,
documents, software, hardware, and support to be supplied by external sources and 
delivery dates;  list of data, information, documents, software, and support to be 
delivered to the customer and delivery dates; and schedule for reviews (internal and
external). Updated schedules are added at the end of each phase.

4.4 Metrics — a table showing, by phase, which metrics will be collected to capture 
project data for historical analysis and which will be used by management to 
monitor progress and product quality (see Section 6 and Reference 3).  If standard 
metrics will be collected, references to the relevant standards and procedures will 
suffice. Describes any measures or data collection methods unique to the project.

4.5 Risk Management — statements of each technical and managerial risk or 
concern and how it is to be mitigated.  Updated at the end of each phase to 
incorporate any new concerns.

5. PRODUCT ASSURANCE

5.1 Assumptions and Constraints — that affect the type and degree of quality 
control and configuration management to be employed.

5.2 Quality Assurance (QA) — table of methods and standards used to ensure the 
quality of the development process and products (by phase).  Where these do not 
deviate from published methods and standards, the table references the appropriate
documentation.  Means of ensuring or promoting quality that are innovative or 
unique to the project are described explicitly.  Identifies the person(s) responsible for
QA on the project, and defines his/her functions and products by phase.

5.3 Configuration Management (CM) — table showing products controlled, tools and
procedures used to ensure the integrity of the system configuration:  when the 
system is under control, how changes are requested, who makes the changes, etc.  
Unique procedures are discussed in detail.  If standard CM practices are to be 
applied, references to the appropriate documents are sufficient.  Identifies the 
person responsible for CM and describes this role. Updated before the beginning of 
each new phase with detailed CM procedures for the phase, including naming 
conventions, CM directory designations, reuse libraries, etc.

6. REFERENCES

7. PLAN UPDATE HISTORY — development plan lead sheets from each update indicating 
which sections were updated.

Figure 2-1. Software Development/Management Plan Contents (2 of 2)
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EXECUTING THE SOFTWARE DEVELOPMENT/MANAGEMENT PLAN

The plan will be an effective management aid only to the extent  that  it  is followed.  The manager
must direct and control the execution of the plan by

• Maintaining it
• Measuring progress and performance
• Recognizing danger signals               .
• Taking corrective action to solve problems

At the end of each development  phase or build, the manager should reestimate project size, effort,
and schedule for inclusion in the software development/management plan.  Earlier estimates
should not be removed from the plan.  They provide a record of the planning process that will be
needed for the software development history (Section 4).  From this information, the organization
can determine which estimation methods were effective and should be used again.

When it is effectively maintained, the development plan documents the current strategy for the
software development effort.  By providing a uniform characterization of the project, the plan can
be invaluable if changes occur in team leadership.

Significant revisions to the plan should not be considered routine maintenance.  Effort should be
invested when the plan is written to ensure that it is realistic, rather than continually modifying it to
agree with actual decisions or experiences.  Major shifts in technical approach or use of
methodologies, for example, should occur only if necessary.

By measuring progress, the manager discovers whether the development/management plan is
effective or not.  Section 6 of this handbook addresses the types of metric data that should be
collected and maintained as a record of project status.

Metric data alone are not sufficient for gauging the effectiveness of the plan, but by comparing
these data to nominal values from related applications, some assessment is possible.  Section 3
provides guidelines on resources and staffing that enable some comparison with the actual project
data.  The use of a project histories data base, as explained in Section 6, is another management
aid for measuring progress.
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SECTION 3 — COST ESTIMATING, SCHEDULING, AND
STAFFING

This section presents methods for managing and estimating the resources required for the software
project.  Two of the most critical resources are development staff and time.  The software
manager is concerned with how much time will be required to complete the project and what staffing
level will be necessary over the development cycle.  Both staff and time are estimated using the
procedures discussed in this section.  Issues of staff size and composition over the life cycle are
considered.  Guidelines are provided for estimating some additional important cost elements such as
computer utilization and system documentation.  Reference 4 provides the background and rationale
for software cost estimation.

A cautionary note applies to the cost factors throughout  this section.  The values summarized in the
appendix to this document reflect SEL experiences in developing software for the flight dynamics
environment.  Readers of this handbook should assess how well that summary
matches their own software development environment as an indication of the degree of confidence
to place in the particular cost values presented.  A prudent plan is to use the values here as a first
approximation and begin collecting data (see Reference 3) to obtain cost factors that are
representative of the reader's environment.

ESTIMATING DEVELOPMENT COST AND SCHEDULE

An understanding of the expected schedule consumption and effort expenditure in each phase of the
life cycle is essential to managers.  Figure l-l and Table 3-l present  these distributions as they
reflect projects monitored by the SEL.  Because the cost of developing software is often expressed in
units of effort (e.g., staff-months) to avoid the effects of inflation and salary variation, cost and
effort will be used interchangeably in this section when accounting for the expenditure of staff
resources.

Table 3-1. Distribution of Time Schedule and Effort Over Phases

PHASE

Requirements Analysis

Preliminary Design

Detailed Design

Implementation

System Testing

Acceptance Testing

12

8

15

30

20

15

6

8

16

40

20

10

PERCENT
OF TIME

SCHEDULE

PERCENT
OF EFFORT

Although it is the most uncertain, the initial estimate is, in many ways, the most important.  It
occurs at such an early stage (after the requirements definition activity) that the temptation is strong
to ignore it; to do so is a mistake.  Making the initial estimate has the welcome side effect of leading
the manager to consider the various factors bearing on the size and complexity of the development
task.  The initial estimate seeds the estimation process, serving as a reference value with which to
compare later estimates.  In view of this singular role, the following steps are suggested for
achieving an initial estimate
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• Decompose the requirements as far as possible.  The decomposition unit at this point will
probably be the subsystem.

• For each decomposition unit, identify similarities with functional units in previously developed
systems and use any historical size data available from these completed systems.

• For decomposition units not strongly related to those of previous projects, use personal
experience to estimate the size of units.

• Form the size estimate (in lines of code) for the entire project by adding the estimates for all the
decomposition units.

• From historical data and personal experience, estimate the work rate (in lines of code per staff-
month).

• Divide the size estimate by the work rate to obtain an estimate of the effort in staff-months.

• Apply the uncertainty proportion of l.0 to the size and effort estimates to obtain a range of
possible values (See Figure 3-1 and Table 3-2).

After the initial estimate is made, a minimum of five reestimates (numbered 2 through 6 in
Figure3-l) are prescribed.  These reestimates are detailed in Table 3-2.  They are based on the
increasing granularity in the representation of the system during the life cycle.  The uncertainties
from Figure 3-1 are repeated in Table 3-2 because of their importance in transforming the individual
estimates into ranges of estimated values.

The estimation factors in Table 3-2 represent average values for typical development projects
monitored by the SEL.  The estimates should be adjusted (before the uncertainty proportion is
applied) when the manager identifies certain aspects of the problem, process, or environment that
vary significantly from customary development conditions.   For example, when many modules
within the system will be unusually large or small due to their specialized function (e.g., in generating
graphics), their estimated size should be based on previously developed modules with similar
functions.  In addition, any of the following conditions may strongly affect the effort necessary to
complete the project:  use of a new and dissimilar programming language, development by a
completely inexperienced team, or the use of a new and dissimilar computer system.

The effects of some of these conditions have been estimated by the SEL.  Table 3-3 provides the
recommended percentage adjustment to the effort estimate due to the complexity of the problem.
Table 3-4 provides an adjustment to the effort estimate for the effect of different team experience
levels.

LIFE CYCLE
PHASES

REQUIREMENTS
DEFINITION AND
SPECIFICATION

REQUIREMENTS
ANALYSIS

DETAILED 
DESIGN IMPLEMENTATION

SYSTEM 
TEST

ACCEPT-
ANCE
TEST

PRELIMINARY
DESIGN

1

1.00

2

0.75

3

0.40

4

0.25

5

0.10

6

0.05

a

ESTIMATES

a
Reestimates should also be made at the end of each build or release of a staged implementation.

UNCERTAINTY 
(PROPORTION)

Figure 3-1. Cost Estimation Schedule
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Table 3-2. Procedures for Reestimating Size, Cost, and Schedule During Development

ESTIMATION
POINT

DATA
REQUIRED SIZE ESTIMATE COST (EFFORT) 

ESTIMATE

end of
Requirements 
Analysis

end of
Preliminary 
Design

end of
Detailed Design

end of
Implementation

end of
System Testing

Number of 
subsystems

Number of units

Number of new 
and extensively 
modified units (N)

Number of reused 
units (R) (slightly 
modified and 
verbatim

Current size in 
SLOC

Effort expended to 
date

Time schedule 
expended to date

Effort expended to 
date

Use 11000 SLOC 
per subsystem 

Use 190 SLOC per 
unit

Compute number of 
developed units =
N + 0.2R

Use developed 
SLOC = 200 x 
number of 
developed units

Add 26% to current 
size (for growth 
during testing)

Final product size 
has been reached

Use 3000 hours 
per subsystem

Use 52 hours per 
unit

Use 0.31 hours per 
developed SLOC

Add 43% to effort 
already expended 
(for effort to 
complete)

Add 11% to effort 
already expended 
(for effort to 
complete)

UNCERTAINTY 
(PROPORTION) b

Use 83 weeks per 
subsystem per 
staff member

Use 1.45 weeks 
per unit per staff 
member

Use .0087 weeks 
per developed 
SLOC per staff 
member

Add 54% to time 
schedule
expended (for 
time to complete)

Add 18% to time 
schedule
expended (for 
time to complete)

0.75

0.40

0.25

0.10

0.05

e

c d

NOTE:  Parameter values are derived from three attitude ground support systems (AGSSs):  GOES, GRO, and COBE.

Schedule/staffing values are based on a full-time employee's average work week, with adjustments for holidays, leave, etc. (1864 hours 
annually).  The values provided can be used to determine either schedule or staff level, depending on which parameter is given.
Of size and effort estimates:  Upper limit = (size or effort estimate) x (1.0 + uncertainty).  Lower limit = (size or effort estimate)/
(1.0 + uncertainty).  To allow for TBD requirements, staff turnover, etc., conservative management practice dictates the use of estimates 
that lie between the estimated value and the upper bound.  SEL managers, for example, generally plan for a 40% increase in estimated 
system size from PDR to project end due to changing requirements.
Source line of code:  a single line of executable or nonexecutable source code (including comments and embedded blank lines).
Estimates of total effort (or time).  Subtract effort (or time) already expended to get effort (or time) to complete.
Unit:  a named software element that is independently compilable, e.g., a subroutine, subprogram, or function.

a

b

c
d
e

SCHEDULE/ 
STAFFING 
ESTIMATEa

d

c d
d

d

d
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Table 3-3.  Complexity Guideline

Application, e.g., orbit determination, simulator. The project (or portion of the project) type is old when the 
organization has more than 2 years experience with it.
Computing environment, e.g., IBM 4341, VAX 8810. The environment type is old when the organization has 
more than 2 years of experience with it on average.

a

b

Old
Old
New
New

Old
New
Old
New

ENVIRONMENT
TYPEb

1.0
1.4
1.4
2.3

EFFORT
MULTIPLIER

PROJECT
TYPEa

Table 3-4. Development Team Experience Guideline

Average of team member's years of application experience weighted by member's participation on the team. 
Application experience is defined as prior work on similar applications, e.g., attitude and orbit determination. 
Member's participation is defined as time spent working on the project as a proportion of total project effort.

a

EFFORT 
MULTIPLIER

10
8
6
4
2
1

TEAM YEARS OF 
APPLICATION 
EXPERIENCEa

0.5
0.6
0.8
1.0
1.4
2.6

PROJECT STAFFING

Although the average level of staff is provided by the effort estimate, more specific guidelines are
available for three aspects of staffing — team size, staffing pattern, and team
composition.  Typical staffing profiles are provided in Section 6.  Table 3-5 presents guidelines
for team size in terms of the team leader's experience.  Table 3-6 addresses team composition,
listing recommended percentages of senior personnel and analysts.
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Table 3-5. Team Size Guideline

Applicable

MAXIMUM 
TEAM SIZE 
EXCLUDING 

TEAM LEADER

6
5
4

3
1
0

4
3
2

7 ± 2
4 ± 2
2 ± 1

 TEAM LEADER:  
MINIMUM YEARS OF EXPERIENCE a

Organization Leadership

Applicable 

Organization
Leadership

= Applicable experience (requirements definition, analysis, development, maintenance, and  
   operation).
= Experience with the organization and its development methodology.
= Experience as a team leader or manager.

a

Examples:  A team leader with no leadership experience should not be asked to manage a team with 
greater than three members. A team of seven to nine members should be provided with a leader who has 
six years or more of experience with the application, primarily within the organization.

Table 3-6. Guideline for Development Team Composition

PERCENTAGE 
OF ANALYSTSc

25-33
33-50
33-50
50-67

PERCENTAGE 
OF SENIOR 
PERSONNELb

Old
Old
New
New

Old
New
Old
New

PROJECT
TYPE a

ENVIRONMENT
TYPEa

25-33
25-33
33-50
33-50

The project and environment types are old when the development team has, on average, more than 
2 years experience with them.
Senior personnel are those with more than 5 years of experience in development-related activities.
Analysts are those personnel who have training and an educational background in problem definition 
and solution with the application (project type).

a

b
c

OTHER SOFTWARE DEVELOPMENT COSTS

Estimates and guidelines are presented for other software cost elements: computer utilization, system
documentation, software rehosting, software reuse, and software maintenance.

Cost of Computer Utilization

This cost may be expressed in terms of system size.  The estimate of total hours of CPU time, H, in a
NAS 8040 environment is H = 0.0008L, where L is the number of lines of source code in the
system.  (The NAS 8040 is comparable to an IBM 3033).  The estimated number of runs, R, in the
same SEL environment is R = 0.29L.  Figures 3-2 and 3-3 show computer utilization over the life
cycles of recent projects monitored by the SEL.
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Figure 3-2. Typical Computer Utilization Profile (FORTRAN Projects)
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•

•

In comparison to FORTRAN,
Ada projects utilize a larger
percentage of CPU early in
the life cycle

PDL and prolog are compiled
during the design phases

Integration testing is
conducted throughout the
implementation phase
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Figure 3-3. Typical Computer Utilization Profile (Ada Projects)



3-7

Cost of System Documentation

Documentation cost is included in the cost estimates of Table 3-2.  The average quantity of
documentation for a given software development project can be estimated using the formula
P = 120 + 0.026 L,where P is pages of documentation and L is source lines of code.  This cost
covers a requirements analysis report, design documents, system description, and user's guide.
For a separate documentation task, 4 staff-hours per page may be used to estimate the total cost of
system documentation.

Cost of Rehosting Software

Rehosting means modifying existing software to operate on a new computer system.  Testing will
require a high percentage of the total effort of any rehost project.  Table 3-7 provides the cost of
rehosting high-level language software as a percentage of the original development cost in staff-
hours.

Table 3-7. Cost of Rehosting Software

Percent of original development cost.
Percent of total rehosting cost.
Percent of code that must be newly developed or extensively modified.
Compatible:  Systems designed to be plug compatible, (e.g., IBM S/360 and 4341).
Similar:  Some key architectural characteristics, (e.g., word size) are shared and some are different (e.g., 
IBM 4341 and VAX 8810).
Data extracted from Reference 5.
Dissimilar:  Differences in most characteristics of architecture and organization (e.g., IBM S/360 and PDP 
11/70).

a
b
c
d
e

f
g

Compatible
Similar
Dissimilar

10-16
15-18
20-40

SYSTEM'S 
RELATIONSHIP FORTRAN ADA

aRELATIVE COST

55-70
45-55
40-50

FORTRAN ADA

bTESTING EFFORTS

5-11
10-15
18-30

36-40
30-35
25-30

0-3
4-14
15-32

d

e

CODEc
NEW

g
f f f

Cost of Reusing Software

Reusable modules should be identified during the design stage.  As shown in Table 3-8, the
estimated cost  to reuse a module depends on the extent of the changes.
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Table 3-8. Cost of Reusing Software

Cost as a percent of the cost to develop a new module.a

New
Extensively Modified
Slightly Modified
Old

MODULE 
CLASSIFICATION

PERCENT OF 
MODULE'S CODE 

MODIFIED OR ADDED
a

RELATIVE
COST

100
>25
1-25

0

100
100
20
20

Cost of Software Maintenance

Software maintenance refers to three types of activities occurring after the software is delivered —
correcting defects detected during operational use, making enhancements that improve or increase
functionality, and adapting the software to changes in the operational environment, such as a new
operating system or compiler.

Expected maintenance costs vary widely, depending on the quality of the delivered software and the
stability of the operational environment.  In the environment monitored by the SEL, a large
percentage of the maintenance effort of FORTRAN systems is expended in enhancing the system.
This includes modifying existing components, retesting, regenerating, and recertifying the software.
Few new components are added, and new documentation is generally not produced.
Average annual maintenance effort ranges from 1 to 23% of the total development cost (in staff-
hours) of the original system.  Total maintenance over the life of the project costs from 1.5 to 24
staff-years per million LOC (see Reference 6).

Because maintenance effort varies so widely, the SEL recommends that estimates of the annual cost of
maintenance be adjusted based on project type.  The SEL uses 5% of total development cost as the
estimate of annual maintenance of stable systems with a short life expectancy (less than 4
years).  Annual maintenance of larger, longer lived systems is estimated at 15% of development
cost.
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   SECTION 4—KEY DOCUMENTS AND DELIVERABLES

Documents and deliverables provide an ongoing system description and serve as key indicators of
progress.  They are a central concern of software managers because they mark the transitions
between life cycle phases.  The following documents and deliverables are of specific interest to the
software manager:

• Requirements and functional specifications • Test plans
• Operations concept document • User's guide
• Software development/management plan • System description
• Requirements analysis report • Software development history
• Preliminary design report • System delivery tape — software
• Detailed design document product and supporting files and tools

The documents and deliverables associated with a software development project are keyed to life
cycle phases.  Figure 4-l shows the phases when they should be completed.  In some instances,
preliminary versions are prepared, followed by updates.  For any point in the life cycle, the
software manager can determine what documents and deliverables should be in preparation.  This
section presents the recommended document contents as well as management guidelines for
evaluating completed documents.

REQUIREMENTS
ANALYSIS
REPORT

USER'S GUIDE
(DRAFT)

(UPDATE)

(FINAL)

REQUIREMENTS
DEFINITION

AT END OF
PHASE BELOW DOCUMENTS AND DELIVERABLES

SYSTEM
TEST PLAN

RESULTS

BUILD TEST
PLANS

OPERATIONS
CONCEPT

DOCUMENT

REQUIREMENTS
AND FUNCTIONAL
SPECIFICATIONS
(PRELIMINARY)

(BASELINED)

(SPEC MODS)

(SPEC MODS)

(FINAL)

PRELIMINARY
DESIGN REPORT

DETAILED
DESIGN DOCUMENT

SYSTEM
DESCRIPTION 

(DRAFT)

(FINAL)

a

CODE AND 
SUPPORTING

FILES

(UPDATE)

FINAL SYSTEM
DELIVERY TAPE

RESULTS

(FINAL)

(UPDATE)

ACCEPTANCE
TEST

REQUIREMENTS
ANALYSIS

PRELIMINARY
DESIGN

DETAILED
DESIGN

IMPLEMENTATION

SYSTEM
TEST

aThe preliminary design report evolves into the detailed design document. Descriptive material in the detailed design document provides the basis for the system 
description. Updated prologs and program design language (PDL) from the detailed design are delivered with the final system and operations scenarios and 
performance information are included in the user's guide. 

ANALYTICAL
TEST PLAN

ACCEPTANCE
TEST PLAN

(DRAFT)

SOFTWARE
DEVELOPMENT/
MANAGEMENT

PLAN

(UPDATE)

(UPDATE)

(UPDATE)

(FINAL)

SOFTWARE
DEVELOPMENT

HISTORY
(DRAFT)

(UPDATE)

(UPDATE)

(UPDATE)

(UPDATE)

(FINAL)

RESULTS

Figure 4-1.  Key Documents and Deliverables by Phase

SUGGESTED DOCUMENT CONTENTS

For each document, a suggested format and contents are given (see Figures 4-2 through 4-10), with
the exception of the software development/management plan, which was covered separately in
Section 2.  The actual contents of the documents may vary from the outlines presented here.
Specific features of the application environment may lead the manager to exercise judgment in
selecting the material that is most appropriate and effective.  This allowance for flexibility should be
understood when examining the following figures.
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REQUIREMENTS AND FUNCTIONAL SPECIFICATIONS
This document is produced by the requirements definition team as the key product of the
requirements definition phase.  It is often published in multiple volumes:  volume 1 defines the
requirements, volume 2 contains the functional specifications, and volume 3 provides mathematical
specifications.  The document is distributed prior to the SRR.  Functional specifications are updated
during requirements analysis and baselined following the SSR.

1. Introduction
a. Purpose and background of the project
b. Document organization

2. System overview
a. Overall system concept
b. Expected operational environment (hardware, peripherals, etc.)
c. High-level diagrams of the system showing the external interfaces and data flows
d. Overview of high-level requirements

3. Requirements — functional, operational (interface, resource, performance, etc.),  and data 
requirements
a. Numbered list of high-level requirements with their respective derived requirements 

(derived requirements are not explicitly called out in the requirements document but 
represent constraints, Iimitations, or implications that must be satisfied to achieve the 
explicitly stated requirements)

b. For each requirement:
(1) Requirement number and name
(2) Description of the requirement
(3) Reference source for the requirement, distinguishing derived from explicit

requirements
(4) Interfaces to other major functions or external entities
(5) Performance specifications — frequency, response time, accuracy, etc.

4. Functional specifications
a. Discussion and diagrams showing the functional hierarchy of the system
b. Description and data flow diagrams of the basic functions of each major subsystem
c. Description of general conventions used (mathematical symbols, units of measure, etc.)
d. Description of each basic function

(1) Input
(2) Process — detailed description on how this function should work
(3) Output
(4) Identification of candidate reusable software
(5) Acceptance criteria for verifying satisfaction of related requirements
(6) Data dictionary — indicating name of item, definition, structural composition of the 

item, item range, item type
5. Mapping of functional specifications to requirements — also distinguishes project-

unique requirements from standard requirements for the project type (AGSS, dynamics 
simulator, etc.)

6. Mathematical specifications — formulae and algorithm descriptions to be used in 
implementing the computational functions of the system
a. Overview of each major algorithm
b. Detailed formulae for each major algorithm

Figure 4-2.  Requirements and Functional Specifications Contents
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OPERATIONS CONCEPT DOCUMENT

This document provides a top-down view of the system from the user’s perspective by describing the
behavior of the system in terms of operational methods and scenarios.  It should be provided by
analysts to the development team by the end of the requirements definition phase.  The suggested
contents are as follows:

1. Introduction, including purpose and background of the system
a. Overall system concept
b. System overview with high-level diagrams showing the external interfaces and data flow
c. Discussion and diagrams showing the functional hierarchy of the system
d. Document organization

2. Operational environment, description and high-level diagrams of the environment in 
which the system will be operated
a. Overview of operating scenarios
b. Description and diagrams of the system configuration (hardware and software)
c. Description of the responsibilities of the operations personnel

3. Operational modes
a. Discussion of the system's modes of operation (e.g., critical vs. normal, launch vs. on-orbit 

operations)
b. Volume and frequency of data to be processed in each mode
c. Order, frequency, and type (e.g., batch or interactive) of operations in each mode

4. Operational description of each major function or object in the system
a. Description and high-level diagrams of each major operational scenario showing all input, 

output, and critical control sequences
b. Description of the input data, including the format and limitations of the input.  Sample 

screens (i.e., displays, menus, popup windows, etc.) depicting the state of the function 
before receiving the input data should also be included

c. Process — high-level description on how this function will work
d. Description of the output data, including the format and limitations of the output. 

Samples (i.e., displays, reports, screens, plots, etc) showing the results after processing 
the input should also be included

e. Description of status and prompt messages generated during processing, including 
guidelines for user responses to any critical messages

5. Requirements traceability matrix mapping each operational scenario to requirements

Figure 4-3.  Operations Concept Document Contents
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REQUIREMENTS ANALYSIS REPORT

This report is prepared by the development team at the conclusion of the requirements analysis
phase.  It summarizes the results of requirements analysis and establishes a basis for beginning
preliminary design.  The suggested contents are as follows:

1. Introduction — purpose and background of the project, overall system concepts, and 
document overview

2. Reuse proposal — key reuse candidates and overall architectural concept for the system

3. Operations overview — updates to operations concepts resulting from work performed 
during the requirements analysis phase
a. Updated operations scenarios
b. Operational modes — including volume and frequency of data to be processed in each 

mode, order and type of operations, etc.
c. Updated descriptions of input, output, and messages

4. Specification analysis
a. Summary of classifications (mandatory, derived, "wish list", information only, or TBD) 

assigned to requirements and functional specifications
b. Problematic specifications — identification and discussion of conflicting, ambiguous,

infeasible, untestable, and TBD requirements and specifications
c. Unresolved requirements/operations issues, including the dates by which resolutions are 

needed
d. Analysis of mathematical algorithms

5. System constraints
a. Hardware availability — execution, storage, peripherals
b. Operating system limitations
c. Support software limitations

6. Development assumptions

7. Risks, both to costs and schedules.  These should include risks related to TBD or changing 
requirements, as well as technical risks

8. Prototyping efforts needed to resolve technical risks, including the goals and schedule for 
each prototyping effort

9. Data flow or object-oriented diagrams — results of all functional decomposition or 
object-oriented analysis of the requirements performed during the requirements analysis 
phase

10.  Data dictionary — for the updated processes, data flows, and objects shown in the 
diagrams

Figure 4-4. Requirements Analysis Report Contents
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PRELIMINARY DESIGN REPORT
This report is prepared by the development team as t he pr imary product of the preliminary design phase.  It
presents the functional descript ion of t he syst em and forms the basis f or  the detailed design document.  The
suggested content s are as f ollows:

1. Introduction — purpose and background of t he project, overall system concepts, and 
document overview

2. Design overview
a. Design drivers and their order of  import ance (e.g.,  performance, reliabil ity,  hardware,

memory considerations, operating syst em limit at ions, language considerations,etc.)
b. Results of reuse tradeoff analyses; the reuse strategy
c. Critique of alternative designs
d. Discussion and high-Ievel diagrams of the selected system design, showing hardware

interfaces, external dat a interfaces, interconnect ions among subsyst ems, and data flow
e. A t raceabil ity matrix of  the subsystems against t he requirements
f. Design status

(1) List of const raints, concerns, and problem areas and their  effects on the design
(2) List of assumpt ions and possible effects on design if  they are wrong
(3) List of TBD  requirements and an assessment of their ef fect on system size, 
required effort,  cost, and schedule
(4) ICD st at us
(5) Status of  prototyping efforts

g. Development environment (i .e.,  hardware, peripheral devices, etc.)
3. Operations overview

a. Operations scenarios/scr ipts (one for each major product  that is generat ed).  Includes the 
form and volume of the product  and the frequency of generat ion.  Panels and displays 
should be annotated to show what  various selections will do and should be traced to a 
subsystem

b. System perf ormance considerations
4. Design description f or  each subsystem or major  functional breakdown:

a. Discussion and high-level diagrams of subsystem, including interf aces, data flow , and 
communications for each processing mode

b. High-Ievel descr iption of input and output
c. High-level descr iption of processing keyed t o operat or-specified input and act ions in

terms of points of control, funct ions performed, and results obtained (both normal and
abnormal,  i .e.,  error processing and recovery)

d. Struct ure charts or object -oriented diagrams expanded t o two levels below t he subsystem 
driver

e. Prologs (specifying the module's purpose, operation, call ing sequence arguments,
external references, etc;  Ada project s should provide package specifications for the
principle object s in the system) and program design language (PD L) f or  each module
through t he first  Ievel below  subsyst em driver.   (Prologs and PDL are normally published 
in a separate volume because of size.)

5. Data  interfaces for each internal and external interf ace:
a. Description, including name, function, frequency, coordinates, units, and computer type,

lengt h, and represent at ion
b. Format

(1) Organization and description of fi les (i.e. , data files, t ape, etc.)
(2) Layout of frames, samples, records, blocks, and/or  transmissions
(3) Storage requirements

Figure 4-5. Preliminary Design Report Contents
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DETAILED DESIGN DOCUMENT
This document is the primary product of the detailed design phase.  To complete the document, the
development team updates similar material from the preliminary design report and adds greater
detail.  The suggested contents are as follows:

1. Introduction — purpose and background of the project, overall system concepts, and 
document overview

2. Design overview
a. Design drivers and their order of importance
b. Reuse strategy
c. Discussion and high-Ievel diagrams of the selected system design, showing hardware

interfaces, external data interfaces, interconnections among subsystems, and data flow
d. Traceability matrix of major components against requirements and functional specifications
e. Design status

(1) List of constraints, concerns, and problem areas and their effects on the design
(2) List of assumptions and possible effects on design if they are wrong
(3) List of TBD requirements and an assessment of their effect on system size, 

required effort, cost, and schedule
(4) ICD status
(5) Status of prototyping efforts

f. Development environment
3. Operations overview

a. Operations scenarios/scripts
b. System performance considerations

4. Design description for each subsystem or major functional breakdown:
a. Overall subsystem capability
b. Assumptions about and restrictions to processing in each mode
c. Discussion and high-Ievel diagrams of subsystem, including interfaces, data flow, and

communications for each processing mode
d. High-Ievel description of input and output
e. Detailed description of processing keyed to operator-specified input and actions in

terms of points of control, functions performed, and results obtained (both normal and
abnormal, i.e., error processing and recovery)

f. Structure charts or object-oriented diagrams expanded to the subprogram Ievel, 
showing interfaces, data flow, interactive control, interactive input and output, and 
hardcopy output
g. Internal storage requirements, i.e., description of arrays, their size, their data capacity in 
all processing modes, and implied Iimitations of processing
h. Detailed input and output specifications

(1) Processing control parameters, e.g., NAMELISTS
(2) Facsimiles of graphic displays for interactive graphic systems
(3) Facsimiles of hardcopy output

i. List of numbered error messages with description of system's and user's actions
j. Description of COMMON areas or other global data structures
k. Prologs or Ada package specifications and PDL for each unit (normally kept in a separate 

document because of size)
5. Data interfaces—updated from description in preliminary design report

Figure 4-6. Detailed Design Document Contents
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TEST PLANS
BUILD/RELEASE TEST PLAN

• Prepared by the system test team during the detailed design phase
• Designed to test the functional capability of each build or release (functional subsets

of the complete software system) as defined in the software development/management 
plan and to identify limitations

• Executed during the implementation phase by the system test team as soon as unit
testing and integration of each build/release is complete

ANALYTICAL TEST PLAN

• Prepared prior to the implementation phase by the analysts who will use the system
• Designed to assist developers in verifying the results of complex mathematical and

astronomical calculations performed by the system
• Unit level tests are executed during the implementation phase by developers; end-to-end 

tests are executed as a part of system testing

SYSTEM TEST PLAN

• Prepared by the system test team during the implementation phase
• Designed to verify the system's end-to-end processing capability, as specified in the

requirements document, and to identify limitations
• Executed during the system testing phase by the system test team

ACCEPTANCE TEST PLAN

• Drafted by the acceptance test team following the requirements definition phase, based on 
the requirements and functional specifications document

• Designed to demonstrate the system's compliance with the requirements and functional 
specifications

• Executed during the acceptance testing phase by the acceptance test team

TEST PLAN OUTLINE

1. Introduction, including purpose, type and Ievel of testing, and schedule
2. Traceability matrix mapping each requirement and functional specification to one or more 

test cases
3. Test description (normally the Iength need not exceed 1 to 2 pages) for each test

a. Purpose of test, i.e., specific capabilities or requirements tested
b. Detailed specification of input
c. Required environment, e.g., data sets required, computer hardware necessary
d. Operational procedure, i.e., how to do the test
e. Detailed specification of output, i.e., the expected results
f. Criteria for determining whether or not the test results are acceptable
g. Section for discussion of results, i.e., for explaining deviations from expected results and 

identifying the cause of the deviation or for justifying the deviation

Figure 4-7. Contents of Test Plans
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USER'S GUIDE
The development team begins preparation of the user's guide during the implementation phase.
Items 1 and 2, and portions of item 3, represent updated material from the detailed design document,
although some rewriting is expected to make it more accessible to the user.  A draft is completed by
the end of the implementation phase and is evaluated during system testing.  At the beginning of the
acceptance test phase, an updated version is supplied to the acceptance test team for evaluation.
Corrections are incorporated, and a final revision is produced at the end of the phase.  The suggested
contents are as follows:

1. lntroduction
a. Overview of the system, including purpose and background
b. Document organization
c. Discussion and high-level diagrams of system showing hardware interfaces, external 

data interfaces, software architecture, and data flow
2. Operations overview

a. Operations scenarios/scripts
b. Overview and hierarchy of displays, windows, menus, reports, etc.
c. System performance considerations

3. Description for each subsystem or major functional capability:
a. Overall subsystem capability
b. Assumptions about and restrictions to processing in each mode
c. Discussion and high-Ievel diagrams of subsystems, including interfaces, data flow, and

communications for each processing mode
d. High-level description of input and output
e. Detailed description of processing keyed to operator-specified input and actions in terms 

of points of control, functions performed, and results obtained (both normal and 
abnormal, i.e., error processing and recovery)

f. For interactive subsystems, facsimiles of displays in the order in which they are generated
g. Facsimiles of hardcopy output in the order in which it is produced, annotated to show 

what parameters control it
h. List of numbered messages with explanation of system's and user's actions annotated to 

show the subroutines that issue the message
4. Requirements for execution

a. Resources — discussion, high-level diagrams, and tables for system and subsystems
(1) Hardware
(2) Data definitions, i.e., data groupings and names
(3) Peripheral space considerations — data storage and printout
(4) Memory considerations — program storage, array storage, and data set buffers
(5) Timing considerations

(a) Central processing unit (CPU) time in terms of samples and cycles 
processed

(b) I/O time in terms of data sets used and type of processing
(c) Wall-clock time in terms of samples and cycles processed

b. Run information — control statements for various processing modes
c. Control parameter information — by subsystem, detailed description of all control

parameters (e.g., NAMELISTS), including name, computer type, length, and 
representation, and description of parameter with valid values, default value, units, and
relationship to other parameters

Figure 4-8. User's Guide Contents
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SYSTEM DESCRIPTION

During the implementation phase, the development team begins work on the system description by updating data
flow/object diagrams and structure charts from the detailed design.  A draft of the document is completed during
the system testing phase and a final version is produced by the end of acceptance testing.  The suggested
contents are as follows:

1. Introduction — purpose and background of the project, overall system concepts, and document 
overview

2. System overview
a. Overview of operations scenarios
b. Design drivers (e.g., performance considerations) and their order of importance
c. Reuse strategy
d. Results of prototyping efforts
e. Discussion and high-Ievel diagrams of the selected system design, showing hardware interfaces, 

external data interfaces, interconnections among subsystems, and data flow
f. Traceability matrix of major components against requirements and functional specifications

3. Description of each subsystem or major functional breakdown:
a. Overall subsystem capability
b. Assumptions about and restrictions to processing in each mode
c. Discussion and high-Ievel diagrams of subsystem, including interfaces, data flow, and

communications for each processing mode
d. High-Ievel description of input and output
e. Structure charts or object-oriented diagrams expanded to the subprogram Ievel, showing interfaces, 

data flow, interactive control, interactive input and output, and hardcopy output
4. Requirements for creation

a. Resources — discussion, high-Ievel diagrams, and tables for system and subsystems
(1) Hardware
(2) Support data sets
(3) Peripheral space considerations — source code storage, scratch space, and printout
(4) Memory considerations — program generation storage and data set buffers
(5) Timing considerations

(a) CPU time in terms of compile, build, and execute benchmark test
(b) I/O time in terms of the steps to create the system

b. Creation information — control statements for various steps
c. Program structure information — control statements for overlaying or loading

5. Detailed description of input and output by step — source code libraries for system and 
subsystems, object code libraries, execution code Iibraries, and support Iibraries

6. lnternal storage requirements — description of arrays, their size, their data capacity in all 
processing modes, and implied Iimitations of processing

7. Data interfaces for each internal and external interface:
a. Description, including name, function, frequency, coordinates, units, computer type, Iength, and 

representation
b. Format — organization (e.g., indexed), transfer medium (e.g., disk), Iayout of frames

(samples, records, blocks, and/or transmissions), and storage requirements
8. Description of COMMON blocks, including locations of any hard-coded physical constants
9. Prologs/package specifications and PDL for each subroutine (separate volume)

10.  Alphabetical Iist of subroutines from support data sets, including a description of each 
subroutine's function and a reference to the support data set from which it comes

Figure 4-9. System Description Contents
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SOFTWARE DEVELOPMENT HISTORY
Material for the development history is collected by the project leader throughout the life of the project.  At the end of
the requirements analysis phase, project data and early lessons learned are compiled into an initial draft.  The draft is
expanded and refined at the end of each subsequent phase so that, by the end of the project, all relevant material has
been collected and recorded.  The final version of the software development history is produced within 1 month of
software acceptance.  The suggested contents are as follows:

1 . Introducti on — purpose of system, customer of system, key requirements, development machines and language
2 . Hi s tori cal  overvi ew by phase — includes products produced, milestones and other key events, phase 

duration, important approaches and decisions, staffing information, and special problems
a. Requirements definition — if requirements were produced by the software development  team, this section 

provides an historical overview of the requirements definition phase.  Otherwise, it supplies information 
about the origin and documentation of the system's requirements and functional specifications

b. Requirements analysis
c. Detailed design
d. Implementation — coding through integration for each build/ release
e. System testing
f. Acceptance testing

3 . Project data
a. Personnel and organizational structure — list of project participants, their roles, and

organizational affiliation.  Includes a description of the duties of each role (e.g., analyst,
developer, section manager) and a staffing profile over the life of the project

b. Schedule — table of key dates in the development of the project and a chart showing each estimate (original 
plus reestimates at each phase end) vs. actual schedule

c. Project characteristics
(1) Standard tables of the following numbers:  subsystems; total, new, and reused components; total, new, 

adapted and reused (verbatim) SLOC, statements, and
executables; total, managerial, programmer, and support effort; total productivity

(2) Standard graphs or charts of the following numbers:  project growth and change
histories; development effort by phase; development effort by activity; CPU usage;
system test profile; error rates; original size estimate plus each reestimate vs. final system size; original
effort estimate plus each reestimate vs. actual effort required

(3) Subjective evaluation data for the project — copy of the SEL subjective evaluation form (SEF) or report of 
SEF data from the project data base (see Reference 7)

4 . Lessons  l earned — descriptions of the major strengths and weaknesses of the development process and 
product, what was learned from them, and what specific recommendations can be made to improve future projects
a. Planning — development plan timeliness and usefulness, adherence to development

plan, personnel adequacy (number and quality), etc.
b. Requirements — completeness and adequacy for design, change history and stability,

and clarity (i.e., were there misinterpretations?), etc.
c. Development — lessons learned in design, code and unit testing
d. Testing — lessons learned in system and acceptance testing
e. Product assurance — adherence to standards and practices; QA and CM lessons learned
f. New technology — impact of any new technology used by the project on costs,

schedules, quality, etc. as viewed by both developers and managers, recommendations
for future use of the technology

Figure 4-10.  Software Development History Contents
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GUIDELINES FOR EVALUATING COMPLETED DOCUMENTS

The software manager will be critically reviewing completed documents.  The general guidelines
presented here involve checking the degree to which five basic attributes of a successful
document are present in the document under review:

Accuracy — Is the document correct?  Are there obvious mistakes? Are assumptions about
resources and environment valid?  Is there evidence of a lack of understanding of important
aspects of the problem or process?

Clarity — Is the document expressed in a form that is accessible and understandable?  Are
tables and diagrams used where possible instead of text?

Completeness — Is the right information included, considering the purpose of the document?
Have any necessary items been omitted?  When the document reflects continuing
development from a previous document, does it contain all the elements from the earlier
document?

Consistency — Do passages in the document contradict other passages in the same
document?  Do all symbols conform to a standard notation?

Level of detail — Do the contents reflect a level of detail appropriate to the purpose of the
document? Is more elaboration needed in a specific area?

The following questions can be used to analyze the document for the existence and quality of
essential features.

Requirements and Functional Specifications

Are all assumptions about requirements documented in the functional specifications?
Are all requirements and functional specifications testable as written?
Are performance requirements included?
Is it clear which requirements and specifications are identical or closely similar to those in 
existing systems?

Operations Concept Document

Are operating scenarios realistic?
Is it clear which operations concepts map to which requirements?

Requirements Analysis Report

Has the effect of TBD requirements been underestimated?
Are there additional sources of reusable software?
Are resources sufficient?
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Preliminary Design Report

Have all functional specifications been allocated to subsystems?
Are all interfaces understood?
Is the rationale for the chosen design justifiable?
Is the subsystem partitioning sensible?

Detailed Design Document

Are baseline diagrams provided to the subroutine level?
Are all external files described in content and format (to the byte level)?
Are all TBD requirements resolved?
If the design is followed, will the system meet its requirements?
Is there evidence of information-hiding, i.e., localizing the data usage and access?
Is the coupling between modules low, and are the modules cohesive?

Test Plans

Do the tests describe expected results?
Are the tests repeatable, i.e., do the test specifications adequately describe the setup and 
environment so that two different people would produce the same tests from the test 

descriptions?
How well do the tests cover the range of capabilities?
Are there explicit criteria for determining whether test results are acceptable?
Is the schedule reasonable in light of test resources?

User’s Guide

Will it be understandable to the users?
Is it organized so that it can serve different user populations simultaneously?
Are examples provided?
Is input described in sufficient detail?
Are status messages, error messages, and recovery explained?

System Description

Is the document structured to accommodate both those who want only a high-level view 
of the system and those who seek a detailed view?
Is the scope of the system clear?
Are the relationships to other systems explained?

Software Development History

Is there an update list that shows when estimates of system size, effort, schedule, and cost 
were made?
Have all of the problem areas been discussed?
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SECTION 5 — VERIFICATION, TESTING, AND
CERTIFICATION

This section summarizes recommended methods of verifying, validating, and certifying the
software development process and product.  Both testing and non-testing verification techniques
are used to evaluate the software's function and performance so that problems can be repaired
before their effects become too costly.  Certification subjects the product and process to
independent inspection and evaluation.

CODE READING
Code reading is a systematic procedure for reading and understanding the operation of a
program.  Studies have shown that code reading detects more errors at a lower cost than either
functional testing or structural testing alone (Reference 8).  In the experience of the SEL, the most
powerful verification combination is human inspection followed by functional testing.

Purpose — Code reading is designed to verify that the code of a program unit is correct with
respect to its intended function.

Participants — Code must be read by an experienced developer who is not the original
programmer.  The SEL recommends that two code readers be assigned to each unit, since
studies have shown that only one quarter of the total errors found in code reading are found
by both readers independently (Reference 9).

Activities — All developed code must be read.  Unless the project is using cleanroom
methodology (Reference 9), the code should be cleanly compiled beforehand.  Each reader
reviews the code independently.  In addition to checking functionality, the reader ensures the
code is consistent with the design specified in the prolog and PDL and that it conforms to
standards and conventions.  Detailed guidelines for code reading are provided in Section2 of
Reference 10.

Monitoring — To measure progress, use total number of units coded versus number
successfully read.

UNIT TESTING

Unit testing takes place only after the code has been read.  All newly developed or extensively
modified units must be verified via unit testing.  (NOTE:  Ongoing research efforts are examining
significantly different approaches to testing at the unit level; see Reference 9).

A spectrum of formality and rigor exists for unit testing and integration.  Especially complex or
critical units may need to be tested in isolation, using test drivers and stubs.  In other cases, it may
be more efficient to conduct unit testing on a collection of related units, such as an Ada package.
The manager should select the level of formality and rigor that is most cost effective for the
project.

Purpose — Unit testing verifies the logic, computations/functionality, and error handling of
a unit.

Plan — Usually written by the unit developer, unit test plans are informal.  Procedures for
testing complex algorithms at the unit level are contained in the analytical test plan.
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Participants — The unit developer generally tests the unit, unless the cleanroom method
with its separate test team is used (see Reference 9).

Activities — The tester prepares test data and any necessary drivers or stubs.  He/she
then executes the test plan, verifying all logic paths, error conditions, and boundary
conditions.  Test results are reviewed for accuracy and completeness by the task
leader or designated technical authority.

Monitoring — Use number of units planned versus number successfully unit tested to
measure progress; track number of errors found to gauge software reliability.

INTEGRATION TESTING

Purpose — Integration testing verifies the internal integrity of a collection of
logically related units (called a module) and checks the module's external interfaces
with other modules, data files, external input and output, etc.

Plan — Although a formal test plan is generally not required, integration testing is
more carefully controlled than unit testing.

Participants — Integration testing is usually performed by the members of the
development team responsible for the modules being integrated.

Activities — During integration testing, the software is slowly built up by adding a few
units at a time to a core of modules that have already been integrated.  Integration may
follow a top-down approach, in which lower level modules are added to the top-level
driver level by level.  Alternatively, an end-to-end functional path, or thread, may be
constructed, to which other modules are then added.

Monitoring — Use number of units planned versus number successfully integrated to
measure progress; track number of errors found to gauge software reliability.

BUILD/RELEASE TESTING

A build is a portion of a software system that satisfies, wholly or in part, a subset of the
requirements.  A build that is acceptance tested and subsequently delivered for operational use
is called a release.  Build/release testing is used when the size of the system dictates that it be
implemented in multiple stages.

Purpose — Build testing verifies that the integrated software fulfills a predetermined
subset of functional or operational system requirements.

Plan — The tests to be executed are defined in a build/release test plan.  Build tests are
often subsets of system tests (see Figure 4-7).

Participants — Build testing is generally performed and evaluated by members of the
system test team.

Activities — The activities conducted during build testing are basically the same as those
of system testing.
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Monitoring — Use number of test cases identified versus number successfully tested to
measure progress; formally track errors found to gauge reliability; track effort required to
fix to predict maintainability.

SYSTEM TESTING

System testing verifies the full, end-to-end capabilities of the system.  The system testing phase
follows the implementation test phase; it begins after the last build of the system has been
successfully completed.

Where high reliability software is required for a particular mission application (e.g., flight or
significant real-time software), it is recommended that system testing be planned and performed
by an independent verification and validation (IV&V) team.  Experience within the SEL
environment has found the use of IV&V adds between 5 and 15 percent to total project costs.

Purpose — System testing verifies that the full system satisfies its functional and operational
requirements.  The system must be demonstrated to be both functionally complete and
robust before it can be turned over to acceptance testers.

Plan — The test and verification approach is specified in the system test plan (Figure 4-7).
A system test plan may be developed based on an analytical test plan (designed to show how
the computational accuracy of the system can be verified) or based on the acceptance test
plan.

Participants — The system test team is composed of developers supported by one or more
analysts and is led by a specialist in the developed application.  In the flight dynamics
environment, mission critical applications are tested by an independent team.

Activity — Test execution follows the pattern prescribed in the system test plan.
Discrepancies between system requirements and the test results are identified and assigned to
members of the development team for correction.  Each change to the system is handled in
accordance with established CM procedures.  Regression tests are performed after repairs
have been made to ensure that the changes have had no unintended side effects.  System
testing continues until no more errors are identified.

Monitoring — Use number of test cases identified versus number successfully tested to
measure progress; formally track errors found to gauge reliability; track effort required to
fix to predict maintainability.

ACCEPTANCE TESTING

Acceptance testing is begun after system testing has been successfully completed.  Complete
drafts of the user's guide and system description are provided to acceptance testers by the
beginning of the acceptance test phase.

Purpose — Acceptance testing verifies that the system satisfies its requirements.

Plan — All acceptance tests executed are based on the acceptance test plan written by
analysts prior to the start of the phase (see Figure 4-7).
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Participants — Tests are executed by the acceptance test team supported by members
of the development team.  Testing may be observed by product assurance
representatives and the user.

Activity — After preparations for testing are completed, the test team attempts to
execute all tests in the plan, working around any errors they uncover.  This ensures
that major problems are discovered early in the phase.  Only when execution of a
load module (i.e., an executable image) is totally obstructed does testing cease until a
new load module can be installed.  Each new load module is regression tested to
ensure that previously demonstrated capabilities have not been adversely affected by
error corrections.

Monitoring — Use number of test cases identified versus number successfully tested
to measure progress; track errors found to gauge reliability; track effort required to
fix to predict maintainability.

TEST MANAGEMENT GUIDELINES

A summary of essential management guidelines on software testing is presented below.  The
observations about the planning and control of testing are derived from SEL experience.

Realize that testing is important — 30 percent of development effort in the flight
dynamics environment is devoted to system and acceptance testing

Apply adequate resources

• Time — 35 percent of the time schedule
• Staff — experienced, well-trained in defect detection
• Computer — peak use in testing phases of FORTRAN projects (see Figure 3-2)

Plan for it early — as part of the software development/management plan

Plan for it explicitly — using formatted test plans (see Figure 4-7)

Test continually during the life cycle with five major types of testing (Reference 10)
— unit, integration, build/release, system, and acceptance

Prepare for testing — use testability as a criterion for evaluating requirements
statements, designs, and build/release plans

Apply testing aids (Reference 2)

• Requirements allocation matrices
• Decision tables and test summary tables
• Test library

Monitor testing costs (Reference 3) — collect data on

• Calendar time and staff effort spent testing and verifying software
• Cost of diagnosis — finding the defect
• Cost of repair — making all the necessary corrections to code and documentation
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Measure testing progress

• Compare testing costs and number of defects with past projects
• Record defect detection rate as testing effort is applied
• Track number of tests identified, number executed, and number passed.  The 

percentage of executed tests that fail should be nearly halved for each subsequent 
load module tested (see Table 5-1)

Table 5-1. Expected Percentage of Tests Executed That Pass

Version 1
Version 2
Version 3
Version 4

LOAD
MODULE

AVERAGE
PASS RATE

PASS RATE 
RANGE

50%
77%
88%
99%

35-70%
75-80%
85-90%
95-100%

CERTIFICATION

Broadly defined, certification is a statement attesting to something.  For example, an
individual may be charged with certifying that

• Coding standards were followed
• Code agrees with PDL
• CM procedures have been followed
• Specific test cases were run
• All contractual items have been delivered

Although there is considerable diversity in what is being certified, there are common aspects
as well. Certification is a binary decision — either the materials or activities are certified or
they are not.  It is performed by individuals who can be objective about their certification
assignment. This objectivity is a key reason for introducing certification into the software
development process. Certification contributes to quality assurance by providing an
independent check on development.  Confidence in the final software product is enhanced if
both the process and product are certified.

Essential management guidelines for certification are summarized below.

Determine the objective of the certification, e.g., to ensure that

• Design, code, or documentation is correct
• Standards, procedures, or guidelines are being followed
• System performance meets operational requirements

Define entry criteria — what materials must be submitted for certification?

• Establish procedures for obtaining documents or code that will be required
• Identify the individuals responsible for certification
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Define exit criteria — certification is a binary decision.  How will submitted materials be
evaluated to make the certification decision?

Specify the certification procedure, document it, and follow it

More detailed recommendations depend on the object of certification.  For example, in
certifying intermediate products like designs, test plans, or unit code, the materials submitted
for certification and the evaluation criteria will vary.  Figure 5-1 shows the general guidelines
applied to an example of unit design certification.

1. Certification Objectives:
a. Ensure the design correctly provides the functionality required of the unit
b. Check for conformance with standards and conventions regarding prolog and PDL
c. Identify visible weaknesses in the design early so that defects can be repaired with

minimum cost
d. Encourage developers to thoroughly specify all unit interfaces — calling arguments, 

parameter specifications, etc.

2. Entry Criteria — the following materials must be submitted:
a. Source listing of prolog and PDL
b. Structure chart or object-oriented diagram of the subsystem or major component to

which the unit belongs
c. Design certification form, containing author's name, date submitted for certification, unit 

name, and subsystem name

3. Exit Criteria — some questions will be specific to the design methodology used. The
following are more general questions, typically used to evaluate submitted materials and
decide on certification:
a. Do the prolog and PDL adhere to all prevailing standards and conventions?
b. Are all necessary elements of the prolog complete, e.g., are all data elements described?
c. Does the PDL describe a valid process for providing the function assigned to the unit?
d. Is it clear from the PDL when the unit output will be generated?
e. Is the dependency clear between each input parameter or external reference and the

processing described in the PDL?
f. Does the PDL define enough error detection logic?
g. Does the PDL account for the upper and lower bounds of unit input?

4. Certification Procedure — recommended steps for the certification:
a. Meet with the development team leader to establish the position of unit design

certification in the project's life cycle; all units must have their design certified before
they are implemented

b. Issue written descriptions of entry criteria, with examples of the required form for
submitted materials

c. Prepare a unit design certification checklist, based on exit criteria, to record evaluation
results

d. Document the procedure for obtaining materials, completing the certification checklist,
and presenting results to the development team

e. Implement the procedure, retaining certification results in the project library

Figure 5-1. Example of Unit Design Certification



6-1

SECTION 6 — METRICS AND
KEY MANAGEMENT AIDS

Effective software project management and control depends on an accurate assessment of a
project's health at any point in the life cycle.  This assessment must be based on up-to-date metrics
that reflect the status of the project, both in relation to the project plan and in comparison to
models of expected performance drawn from historical experience with similar projects.

This section presents useful metrics for project evaluation and control and discusses several tools
designed to aid managers in performing these critical functions.

METRICS

Software metrics/measures can provide the manager with key indicators of project performance,
stability, and quality.  Both objective and subjective measures are important to consider when
assessing the current state of a project.  Objective data consist of actual counts of items (e.g., staff-
hours, SLOC, components, test items, units coded, changes, errors, etc.) that can be independently
verified.  They are usually collected through a formal data collection process.  Subjective data are
based on an individual's or a group's feeling or understanding of a certain characteristic or
condition (e.g., level of difficulty of the problem, degree of new technology involved, stability of
the requirements, etc.).  Together these data serve as a system of checks and balances throughout
the project.  The wise manager depends on both objective and subjective data to get an accurate
picture of project health.  Subjective data provide critical information for interpreting and
validating the objective data, while the objective data provide true counts that may cause the
manager to question his subjective understanding and investigate further.

Because collecting, maintaining, and reporting metric data can be a significant undertaking, each
data item must serve a well-defined purpose.  The project software development plan should
define which data will be collected and how each data item will be used.  To achieve the maximum
benefit, metric data must be accurate, current, and accessible to the manager.

The availability of project metrics will be of no or little value unless the manager also has access to
models or metrics that represent what should be expected.  This information is normally in the
mind of the experienced software manager.  Ideally, such historical data and experience should
also be stored in an "organizational memory" (data base) accessible to new managers.  Using
information extracted from such a data base, managers can gauge whether measurement trends in
the current project differ from similar past projects and from the expected models for the local
environment.  The costs and benefits of such a data base are further discussed in References 3 and
11, respectively.

The SEL project histories data base holds key characteristics and performance models of software
development in the SEL environment, as well as three classes of data for each past project:  cost,
process, and product data.  Cost data are confined to measures of effort.  The use of effort data
removes the effects of labor rates and hardware costs, allowing the manager to focus on the more
accurately modeled costs of software development and system engineering.  Process data include
information about the project (such as methodology, tools, and techniques used) and information
about personnel experience and training.  Product data include size, change, and error
information and the results of statistical analyses of the delivered code.
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Figure 6-1 suggests the possibilities for useful comparison when a project histories data base is
available.  Models based on completed projects help the manager initiate and revise current plans
and estimates.  As performance data are gathered for a new project, the manager can compare
these values with those for related projects in the data base.

The comparisons in Figure 6-1 should be viewed collectively as one component of a feedback
and control system.  Comparisons lead to revisions in development plans.  To execute the revised
plans, the manager makes changes in the development process, which result in adjusted measures
for the next round of comparisons.

CURRENT
PROJECT
METRICS

REVISED PLAN 
AND 

PROJECT
ADJUSTMENT

Compare with
organizational 

memory

Compare with
project plan

(expectations)

Assess 
health

PLOTS PLOTS

CURRENT
SUBJECTIVE

DATA

PROJECT 
HISTORIES

AND MODELS

CURRENT
PROJECT

PLAN

Figure 6-1. Management Through Measurement

MANAGEMENT METRICS AND THEIR USE

An endless list of metrics can be proposed for management use, ranging from high-level effort and
software size measures to detailed requirements measures and personnel information.  Quality, not
quantity, should be the guiding factor in selecting metrics.  It is best to choose a small, meaningful
set of metrics that have solid baselines in the local environment.

In the SEL, eight key metrics contribute to the successful management of software development
projects:  1) source code growth rate, 2) effort data, 3) system size estimates, 4) computer usage,
5) error rates, 6) reported/corrected software discrepancies, 7) software change rate, and 8)
development activity status data.  Managers analyze the metrics individually and in sets to get an
accurate reading of the health of their projects with relation to cost, schedule, and quality.  Many of
these metrics provide critical insight into the stability of a project — insight that is lacking in
standard performance measurement systems.

The following pages describe these eight key software management metrics.  The models presented
have been developed and refined based on the software heritage that is recorded in the SEL data
base.  In each case, a real project example is presented that demonstrates the use of the metric.
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NOTE:  Overall trend is the same for both Ada and FORTRAN systems. Ada 
systems show more growth in the design phase as compiled PDL is produced.

Figure 6-2.  SEL Software Growth Profile

The growth of source code in the configured library closely reflects requirements completeness and the
software development process.  In the SEL environment, periods of sharp growth in SLOC are separated by
periods of more moderate growth (Figure 6-2).  This is a reflection of the SEL practice of implementing
systems in builds.  The model shows that, in response to requirements changes, 10 percent of the code is
typically produced after the start of system testing.

A deviation from the growth model simply emphasizes that the project is doing something differently.  For
example, a project that is reusing a large amount of existing code may show a sharp jump early in the code
phase when reused code is moved into the configured library.

Figure 6-3 shows an example from the SEL environment, where code growth occurs in a step-wise fashion,
reflecting builds.  The Gamma Ray Observatory (GRO) AGSS (250 KSLOC), developed from 1985 to
1989, was impacted by the shuttle accident.  Beginning with the implementation phase, the schedule was
stretched over 3 years and the staff reduced accordingly.
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Figure 6-3.  Example of Code Growth — GRO AGSS
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EFFORT DATA – 2

•

•

•

Staffing profiles should reflect
the environment and project
type

Effort is a key indicator
of progress and quality

Effort data are critical
replanning aids
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Deviation:  Less staff required to meet schedules
Possible causes:                                          
a) Very productive team
b) Poor quality product                             
c) Easy problem

Deviation:  More staff required to meet schedules 
Possible causes:                                          
a) More complex problem                            
b) Unstable requirements causing extensive rework   
c) Inexperienced team
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Figure 6-4.  SEL Staffing Profile Model

The typical staffing profile closely reflects the nature of the project environment and the type of problem being
solved.  In the SEL environment, where a substantial portion of requirements details are not known until mid-
implementation, managers plan for a parabolic staffing profile instead of the traditional, widely used Rayleigh
curve (see Figure 6-4).  However, once a project is underway, they expect to see the doubly convex curve shown
above.  The cause of this trend is not well-understood, but it occurs repeatedly on flight dynamics projects in this
environment and, therefore, is the SEL model.

Another important profile is the expected effort distribution among software development phases and among
software development activities.  The SEL effort distribution models (Figure 6-5) show some differences between
FORTRAN and Ada projects.
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NOTE:  The projects sampled for this figure were selected for the purpose of comparing FORTRAN to Ada 
and differ from those used to generate Tables 3-1 and 3-2.
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Figure 6-5.  SEL Effort Distribution Models
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The SEL has found these metrics to be key factors in characterizing their environment.  They are
also used as a yardstick for assessing the impact of new technology.

Utilizing the expected effort distributions and staffing profile, a manager can predict the total cost
and schedule based on effort spent to date.  If more effort is required to complete the design of a
system than was planned, it is likely that the remaining phases will require proportionately more
effort as well.  After investigating why the deviation has occurred, the manager can make an
informed choice as to whether staff or schedule must be increased and can plan accordingly.

Deviations in effort expenditure can also raise quality flags.  If all milestones are being met on an
understaffed project, the team may appear to be highly productive, but product quality may be
suffering.  In this case, the manager should not automatically reduce future effort predictions but,
based on an audit of the design and code, may need to add staff to compensate for work not
thoroughly completed in earlier phases.

Figure 6-6 presents an example of the use of metrics data in both planning and monitoring a
project.  The Earth Radiation Budget Satellite (ERBS) AGSS (160K SLOC), developed during the
1982-1984 timeframe, is considered to be a highly successful project.  Effort data were a key
factor in management's detection and timely correction of several problems that would have
seriously jeopardized project progress.
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Explanation:   The original staffing plan was based on an underestimate of the system size. Toward the end of the design phase, 40% more effort was required on 
a regular basis. This was one of many indicators that the system had grown, and the project was replanned accordingly. However, effort continued to grow when 
the second plan called for it to level off and decline. When it was clear that still more staff would be required to maintain progress, an audit was conducted. The 
audit revealed that the project was plagued with an unusually large number of unresolved TBDs and requirements changes that were causing an excessive 
amount of rework and that — as part of the corrective action — another replan was necessary.

Figure 6-6.  Effort Data Example — ERBS AGSS
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SYSTEM SIZE ESTIMATES – 3

•

•

•

•

•

Tracks change in estimates of final
system size (in SLOC)

Is a key indicator of system stability

Size will typically be up to 40%
larger than PDR estimates

Estimates should be made monthly
by project manager

Metric used must be consistent —
either executable, total, or
noncomment lines
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NOTE:  Although Ada systems are usually larger than FORTRAN equivalents, no 
appreciable differences have been noted in the growth percentage.

Deviation:  Sudden decrease in estimate
Possible Cause:  Requirements removed 
or negotiated out

Figure 6-7.  SEL Size Estimates Model

The growth of software size estimates should reflect requirements stability and completeness within
the environment.  The profile must either be based on heritage or on a measure of requirements
clarity and completeness.

In the SEL environment, a large number of TBDs in the requirements and specifications, combined
with a substantial number of requirements changes, typically cause a system to grow up to 40 percent
larger than is estimated at the time of PDR.  As the details of the unknown portions of the system
become clear, the size estimate grows more rapidly.  The range of accepted growth narrows as the
system is clearly defined (see Figure 6-7).

In the example shown in Figure 6-8, investigation revealed that the project requirements were
growing substantially and that additional funding was needed to complete the work.
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Corrective Actions:  Review cost for
requirements submitted since CDR on a
case-by-case basis.  Enforce change
control procedures on future specification
modifications.  Request more budget, and
replan based on resulting system size (2).

Figure 6-8.  Sample Size Estimates — UARS AGSS
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COMPUTER USAGE – 4

•

•

•

CPU is a key progress indicator for design and
implementation

Use of CPU should reflect environment and
process phase

Either CPU time or number of runs may be
used
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NOTE:  Ada systems require more CPU time throughout the development 
lifecycle. However, the overall trend (expressed as percent of the total) is the 
same for similar FORTRAN and Ada systems.

Figure 6-9.  SEL Computer Usage Model

The use of CPU is directly related to the particular process being applied, but trends have been found to be
heavily environment dependent.  The profile must either be based on heritage or a specific project plan.  Use of
a development methodology that calls for extensive desk work, such as the cleanroom methodology (Reference
9), will inevitably create significant deviations.

On a typical SEL flight dynamics project, a small amount of CPU time is used during the design phase for
prototyping and entering PDL (more time is used in Ada systems for which PDL is compiled).  The steep
upward trend early in the implementation phase reflects an increase in online development activities (see Figure
6-9).  System testing is CPU-intensive, continuing the trend.  Further but slower increases during acceptance
testing are due to extensive numerical testing and analysis.

Figure 6-10 is an example of CPU metrics taken from the ERBS AGSS, developed from 1982 to 1984 (160
KSLOC).  This project deviated from the SEL model and raised a red flag.  In this case, investigation showed
that the project was being adversely affected by unstable requirements.
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Figure 6-10.  Example of Computer Usage — ERBS AGSS
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ERROR RATES – 5

•

•

•

Track errors vs. total estimated size of
project in developed SLOC

Error rates should continually
decrease in subsequent phases.  The
SEL has found the "halving" model
reasonable, in which rates are cut by
50% each phase

Accounting for differences in coding
style, rates are similar for FORTRAN
and Ada, although classes of errors
differ
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Deviation:  Project's error rate 
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Possible causes:
a) Unreliable software
b) Misinterpreted requirements
c) Extremely complex software

Deviation:  Project's error 
rate is below model bounds
Possible causes:
a) Reliable software
b) "Easy" problem
c) Inadequate testing

Figure 6-11.  SEL Error Rate Model

There are two types of information in the error rate model shown in Figure 6-11.  The first consists
of the absolute error rates expected in each phase.  The rates shown here are based on projects from
the mid-1980s.  The SEL expects about four errors per thousand SLOC during implementation,
two during system test, and one during acceptance testing.  Analysis of more recent projects indi-
cates that error rates are declining as the software development process and technology improve.

The second piece of information is that error detection rates reduce by 50 percent in each
subsequent phase.  This trend seems to be independent of the actual values of the error rates.  It is
still true in recent projects where overall error rates are declining.  However, if the error rate is low
and the detection rate does not decline from phase to phase, inadequate testing and a less reliable
system are likely.

Figure 6-12 is an example from the Cosmic Background Explorer (COBE) AGSS software
developed from 1987 to 1988 (175 KSLOC).
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Cause:  Early indication of high quality.  Smooth
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Result:  Proved to be one of the highest quality
systems produced in this environment.

Figure 6-12.  Sample Error Rates — COBE AGSS
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REPORTED/CORRECTED SOFTWARE DISCREPANCIES – 6

•

•

•

•

Key information is in the
slope of the "Open Reports"
curve

Expect sharper error i
ncreases at start of each phase

Trends (rates) in each of the
three curves provide
information

Model is similar for both
FORTRAN and Ada projects

Observation: Project's count of open 
discrepancy reports is growing
Possible causes:
a) Inadequate staffing to
    correct errors
b) Software very unreliable
c) Ambiguous or volatile
    requirements 

Start of Testing Phase End of Testing Phas
TIME
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Discrepancies
Found

Discrepancies 
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Observation:  Project's count of open 
discrepancy reports is decreasing
Possible causes:
a) Stable development
b) Testing/development progressing
c) Reliable, well-designed software 
    (easy to fix errors)  

0

Open discrepancy 
reports

    Figure 6-13.  SEL Software Discrepancy
    Status Model

By consistently recording reported vs. fixed discrepancies, the manager will gain insight into soft-
ware reliability, progress in attaining test completion, staffing weaknesses, and testing quality.  The
"open reports" should decline as testing progresses unless there are inadequate staff correcting
pro-blems or the software is exceptionally "buggy".  The point at which the "open" and "fixed"
curves intersect is the point at which defects become corrected faster than they are reported.  At
this time, the manager can more confidently predict the completion of the testing phase (see
Figure 6-13).

This error data — combined with test executions and pass rates — will enable the manager to
predict quality and completion dates.  When the number of errors found is lower than expected,
while the test rate is at or above normal, the software is of high quality.

The example shown in Figure 6-14 is from the Trajectory Computation and Orbital Products
System (TCOPS) developed from 1983 to 1987.  The total size of this system was 1.2 million
SLOC.
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Results:  System attained stability at
week 35, with errors being corrected
faster than they were being reported.

Figure 6-14.  Example of Discrepancy Tracking — TCOPS
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RATE OF SOFTWARE CHANGE – 7

•

•

•

Reported changes include errors

Change rate is a key stability
indicator

Both absolute rate and weekly
increments are significant
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     Figure 6-15.  SEL Change Rate Model

The rate at which the software is changing strongly reflects the software development process and stability of
project requirements, so any model used for comparative analysis must be based on a solid understanding of the
environment.  Two key pieces of information are shown in the model:  (a) the absolute value of the change rate
and (b) the week-to-week trend.

In the SEL environment, the expected change rate has been determined through past project measurement.  The
model (Figure 6-15) reflects a steady, even growth of software changes from mid-implementation through
acceptance testing.  Exaggerated flat spots (periods without change) or a large jump (many changes made at the
same time) in the data should raise flags.  Some deviations of this nature may be normal (e.g., during the
testing phase, code CM procedures often cause changes to be held and recorded as a group).  However, any
deviation is a warning sign that should spur investigation.

Figure 6-16 presents an example from the SEL environment of a project that experienced a higher than normal
change rate.  The specifications for the Geostationary Operational Environmental Satellite (GOES) AGSS (129
KSLOC), developed from 1987 to 1989, were unusually problematic.  Many changes to the requirements were
made throughout the project, even after implementation had begun.  Early recognition of the change rate
allowed managers to compensate for this by tightening CM procedures.
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beginning midway through implementation.

Cause:  Unusually high number of specification
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Corrective Action:  Strongly enforced CM
procedures to deal with changes.

Result:  High-quality project delivered on schedule.

Figure 6-16.  Change Rate Example — GOES AGSS
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DEVELOPMENT ACTIVITY STATUS DATA – 8

•

•

•

•

Key progress indicator

Indirect software quality
indicator

Model must reflect
development methodology
used

Monitor only major activities
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Units Read

Units Tested

Start of Build 1 End of Build 1 IMPLEMENTATION 

Figure 6-17.  SEL Development Status Model for a

Single Build

Development status measures provide insight into the progress of individual development activities that
comprise a particular phase.  These activities should represent the major sequential steps required to complete
development of software units.  Development status measures are valuable in design, implementation, and
testing phases.  In the SEL environment, managers track these measures individually to see that all activities
are progressing smoothly and in parallel.  Figure 6-17 presents an idealistic model for the activities required to
implement a software build.

Figure 6-18 presents an example from the SEL environment, showing development status data for the entire
implementation phase.  The GOES Dynamics Simulator in Ada (GOADA, 171 KSLOC) was developed
between 1987 and 1990.  The project finished code and unit testing nearly on schedule.  When severe problems
were encountered during system integration and testing, it was found that insufficient unit testing had resulted
in poor quality software.
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Result:  Project entered the system
testing phase with poor quality
software.  To bring the software
up to standard, the system test
phase took 100% longer than expected.

Figure 6-18.  Development Profile Example — GOADA
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ADDITIONAL MANAGEMENT METRICS

As mentioned earlier, each environment must determine which metrics and indicators are most
useful for supporting the management process.  Obviously, the eight SEL metrics just described are
not universally applicable.  In addition, other measures may be used for particular projects by
managers in environments with unique characteristics.  Although numerous additional metrics are
defined in the literature, only those measures that have been used successfully as management aids
in the SEL are described below (Table 6-1).

None of these recommended measures are useful without some baseline or expectation of what the
values may be in a particular environment.  If no empirical data exist, an organization may propose
baselines derived from subjective estimates.  However, as soon as a metrics program is instituted, the
subjective baselines must be substantiated or refined using objective data.

Table 6-1.  SEL Recommended Metrics

METRIC SOURCE
FREQUENCY 

(COLLECT/ANALYZE)
TYPICALLY USED IN 

DETERMINING…

Changes (to source)

Changes (to 
specifications)

Changes (classes of )

Computer usage

Discrepancies 
(reported/ open)

Effort (total)

Effort (per activity)

Effort (to repair/to 
change)

Errors (per inspection)

Errors (classes of)

Errors (total)

Size (modules planned/ 
designed/inspected/ 
coded)

Size (manager's 
estimate of total)

Size (source growth)

TBDs (specifications/ 
design)

Tests (planned/ 
executed/ passed)

Tool

CM

Developers

Tool

Testers and 
developers

Time accounting

Developers and 
managers 

Developers

Developers

Developers

Developers

Managers

Managers

Tool

Managers

Testers

Weekly/weekly

By event/biweekly

By event/monthly

Biweekly/biweekly

By event/biweekly

Weekly/weekly

Weekly/monthly

Weekly/monthly

By event/monthly

By event/monthly

By event/monthly

Biweekly/biweekly

Monthly/monthly

Weekly/weekly

Biweekly/biweekly

Weekly/weekly

Quality of configuration control, 
stability of specifications/design

Quality of specifications, the need to 
replan

"Gold plating", design instability, 
specifications volatility

Progress, design instabilities, 
process control

Areas of staffing needs, reliability of 
software, schedules

Quality of planning/managing

Schedules, the need to replan

Quality of design, cost of future 
maintenance

Quality of software, lack of desk 
work

Specific design problems

Software reliability, cost of future 
maintenance

Progress

Stability of specifications, the need 
to replan

Quality of process, design 
completeness/quality

Level of management control

Completion schedules, progress



6-13

DATA COLLECTION

To produce the metrics described, accurate data must be extracted from the development project.  It
is important to determine which management measures are going to be utilized during the
development process so that effort is not expended in collecting extraneous data.

Table 6-1 includes the recommended frequency for which data used for the management measures
should be collected.  It also contains the recommended source of each of the required metrics.
Once again, it should be noted that most projects would probably use only a subset of the measures
listed in the table.  The cost in project overhead to define, collect, and utilize the metrics described
is relatively small, providing that only those metrics to be used in management activities are actually
collected.

Normally, three categories of cost are associated with a "metrics" program:

– Overhead to a development project (filling out forms)

– Cost of processing the data (QA, data entry, storing, filing)

– Cost of analyzing the data (research and "process improvement" programs)

The overhead to the software development task itself for providing the listed metrics is minimal —
well under 0.5% of the project cost — while the data processing cost for the management metrics
program should be no more than 2% of the cost of the project in question.  This includes data
entry, data processing, generating summary output, and routine QA.  The third category (analyzing
data) is minimal for routine use in software development efforts and should be considered a normal
managerial responsibility.  The analysis function can be much more extensive in environments that
are involved with a full "process improvement" and/or software engineering research program.  In
these cases, analysis costs could run as high as 10 to 20 percent of the total development effort.

AUTOMATING METRICS ANALYSIS (THE "SOFTWARE MANAGEMENT
ENVIRONMENT")

As the corporate history of an environment grows and as the characteristics of the software process
are better understood through the collection and application of metrics, an organization should
evolve toward automating the structure, representation, and even analysis of these measures.  The
SEL has built such a tool to aid in the use of relevant metrics toward improved management
awareness.

The Software Management Environment (SME, Reference 12) is an integrated set of software tools
designed to assist a manager in monitoring, analyzing, and controlling an ongoing software project.
The major functions of the SME include the ability to track software project parameters; to
compare these factors to past projects; to analyze the differences between the current project's
development patterns and the expected development pattern within the environment; to predict
characteristics such as milestones, cost, and reliability; and to assess the overall quality of the
project's development process.  To provide these functions, the tool examines available develop-
ment data from the project of interest including manpower, software changes, computer utilization,
and completed milestones.

Figure 6-19 depicts the architecture and typical uses of an automated tool such as SME.  The basis
for the models and information available to such a tool must come from the collection of data within
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the development environment and should result in such summary information as effort distribution in
the life cycle, relationship equations, and the impact that varying technologies have on the
development process.  Examples are shown in Figure 6-20.
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Figure 6-20. Build Corporate Memory Into a Tool

GENERAL INDICATORS OF PROJECT STATUS

The metrics described thus far function as objective yardsticks against which the manager can
gauge project progress and quality.  The following is a list of general characteristics — some
subjective — that supplement these metrics as indicators of true project condition.

Frequency of schedule/milestone changes
Frequency and magnitude of changes should be decreasing throughout the development

process.
Consistency in organizational structure compared to original plans

Minor adjustments to the organization of the project team are expected, but major 
changes indicate problems.

Fluctuation in project staff level and system size estimates
Fluctuations should be within uncertainty limits that become narrower as project 
development evolves.

Ease of access to information on project status, schedules, and plans
Rapid responses to questions about project status and schedules reflect well on the 
quality of the software development plan.

Number of overtime hours required or planned to attain certain objectives
Relying on overtime hours may indicate problems with the staff's qualifications or the 
team leadership.
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Level of detail understood and controlled by the project manager and project leader
Managers' responses to questions about development progress indicate the degree of 
control exercised by leadership.

Discrepancies in staff level and workload
Major differences between planned workload and actual workload may indicate lack of 
understanding.

Discrepancies in computer usage
A decrease or slow start in using the computer may indicate incomplete design.

WARNING SIGNALS AND CORRECTIVE ACTIONS

When a project is in trouble, the manager must take immediate corrective measures to move it back
on a successful course.  The following lists of warning signals and corresponding corrective
actions itemize many of the common problems identified by the SEL.

Problems With Requirements and Specifications

Number of TBD requirements higher than norm or not declining
If critical specifications are missing, design of the affected portions of the system 
should not proceed until the information is obtained.  In noncritical cases, development 
may continue despite the incompleteness.  Assess the effect of missing requirements/ 
specifications and determine whether relatively safe assumptions about the missing 
information can be made.  Before starting the next phase, prepare a risk management 
plan.  For all TBD specifications, assign due dates for resolution of TBDs and notify 
higher management if schedules are not met.

Number of requirements questions submitted vs. questions answered is high and increasing
Indicates inconsistent or confusing specifications.  Difficulties become compounded if 
development is permitted to continue.  Stop development activity and resolve 
inconsistency or confusion in consultation with the user organization.  Negotiate a 
reduction in the scope of the system by defining an understandable subset of the 
original system.  Document all assumptions about requirements in the functional 
specification.

High number of specification modifications received vs. number completed
If major changes or additions to requirements are unavoidable, the design of the 
affected portion of the system must be postponed.  Split development into two 
releases, with the late specifications included in the second release.  Hold a separate CDR

for the second release.

Problems With System Design

Actual number of components designed is fewer than estimated at a particular point in the
detailed design phase

Lack of design growth may be due to poor direction from the team leader, 
inexperienced staff, use of new technology, or changing requirements.  Determine the 
cause of the slow growth.  Based on the cause, either replace junior personnel with 
senior personnel, provide training, decrease staff size to a manageable level, set up a 
prototyping effort to improve technical understanding, or decrease the scope of the 
system.
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Problems With Implementation

Actual number of units coded, tested, and integrated is fewer than those estimated at a
particular point in the implementation phase

Lack of code growth may be due to poor direction from the team leader, inexperienced 
staff, changing requirements, or incomplete design.  Determine the cause of the slow 
growth.  Based on the cause, either replace junior personnel with senior personnel, stop staff
growth, or hold changes and complete implementation of a build first.

Number of completed units increases dramatically prior to the scheduled end of a build or
release (the "miracle finish")

Indicates that code reading and/or unit testing were inadequately performed, and many 
coding errors have not been found.  Reschedule the effort so that code reading is 
performed properly; otherwise, substantially more time will be consumed during 
system testing in isolating and repairing  errors.

Problems With System or Acceptance Testing

Testing phase was significantly compressed
Testing may not have been as complete or as thorough as necessary.  Review test plan 
and results closely; schedule additional testing if indicated.

The number of errors found during testing is below the norm
Test results may have received inadequate analysis.  Use personnel experienced in the 
application to review test results and determine their correctness.  Rerun tests as 
necessary.

Problems With System Configuration

More than one person controls the configuration
Sharing of configuration control responsibilities can lead to wasted effort and the use 
of wrong versions for testing.  Select one person as the project librarian, who will 
organize configured libraries, implement changes to configured components, and issue 
documentation updates about the system.  Component changes must be authorized by 
the technical leader responsible for QA.

''Corrected'' errors reappear
The corrected version may not have been used because more than one person 
controlled the configuration, or the staff was not aware of the ripple effect of other 
changes that should have been made when the original error was corrected.  Consolidate 
configuration control responsibility in one person.  Assign more senior staff to analyze the
effect of error corrections and other changes.

Problems With Development Schedules

Continual schedule slippage
Staff ability may have been misjudged or the staff needs firmer direction.  Bring in 
senior-level personnel experienced in the application to direct junior-level personnel and 
provide on-the-job training.  Decrease the scope of the system.
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Development activity is uneven and ragged; effort drops dramatically immediately after a
milestone is reached

Personnel have been assigned to work part-time on too many projects.  Staff will tend 
to concentrate on a single project at a time, sometimes to the detriment of other project 
schedules.  Reassign personnel, preferably to one project, but never to more than two 
at a time.

Personnel turnover threatens to disrupt development schedule
The effect of turnover is not directly proportional to the number of staff involved.  For 
each key person who leaves a project, two experienced personnel should be added.  A 
junior project member should be replaced by a person at least one level higher in 
experience.  Only in this way can a manager balance the effects on the schedule of the 
training and familiarization time new staff will require.

Capabilities originally planned for one time period are moved to a later time period
If a corresponding move of later capabilities to an earlier time period has not been made, 
the danger is that  the development team will not be able to handle the additional work in 
the later period.  Obtain justification  for the change with detailed schedule information for
the new and old plans. If the shift of capabilities is extensive, stop development activity until
the development/management plan can be revised, then proceed.

Change or decrease in planned use of methods or procedures occurs
The methods or procedures had some use or expected benefit or they would not have 
been included in the development plan.  Obtain justification for the change, to include 
showing how the expected benefit from the planned use of the method will be realized 
in light of the change.

BASIC SET OF CORRECTIVE ACTIONS

Some consistent themes appear in the lists of corrective actions, regardless of problem area. These
recommendations constitute the SEL's basic approach to regaining control of the project when
danger signals arise:

• Stop current activities on the affected portion of the system and assess the problem

• Complete predecessor activities

• Decrease staff to manageable level

• Replace junior with senior personnel

• Increase and tighten management procedures

• Increase number of intermediate deliverables

• Decrease scope of work and define a manageable, doable thread of the system

• Audit project with independent personnel and act on their findings
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SECTION 7—REVIEWS AND AUDITS

Reviews and audits are methods for assessing the condition of the project.  Although both
techniques address quality assurance by examining the plans, methods, and intermediate products
associated with the development process, they are conducted for different reasons.  Reviews are
routinely scheduled as part of the development process;  they mark key phase transitions in the
software life cycle.  Audits are generally not predetermined but are conducted when needed to
evaluate the project's status.

REVIEWS

Reviews are designed to provide regularly scheduled monitoring of project status.  The following
four questions can serve as general guidelines, regardless of the type of review:

Is the development plan being followed?

Is the project making satisfactory progress?

Are there indications of future problems?

Is the team prepared to proceed with the next phase of development?

Reviews may be characterized in various ways, such as formality or timing.  Informal reviews may
be held to brief higher level managers on the current state of the project.  In the SEL environment,
an informal review is generally held following completion of each build.  It covers important
points that need to be assessed before the next phase of implementation is begun, such as changes
to the design, schedules, and lessons learned.

A formal review generally involves a more detailed presentation and discussion and follows a
prescribed agenda. Some reviews may resemble progress reports delivered at fixed intervals, e.g.,
weekly or monthly. In the SEL environment, five formal reviews are recommended — system
requirements review (SRR), software specifications review (SSR), preliminary design review
(PDR), critical design review (CDR), and operational readiness review (ORR).  These reviews are
scheduled at key transition points between life cycle phases (see Figure 7-1).

LIFE
CYCLE
PHASES

REQUIREMENTS
DEFINITION AND
SPECIFICATION

REQUIREMENTS
ANALYSIS

DETAILED 
DESIGN IMPLEMENTATION

SYSTEM 
TEST

ACCEPT-
ANCE
TEST

PRELIMINARY
DESIGN

SRR SSR PDR CDR ORRREVIEWS

Figure 7-1. Scheduling of Formal Reviews

The remainder of this section examines the five reviews in order of occurrence and describes the
format of the review (presenters, participants, and agenda), key issues to be addressed at the review
(in addition to the general questions above), and hardcopy material (outline and suggested
contents).  The hardcopy material will contain some of the same information found in the
documents described in Section 4.  For example, when preparing the hardcopy material for the
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PDR, some of the contents from the completed preliminary design report can be used.  The
manager should also keep in mind that, as with the documents in Section 4, there is some
flexibility in selecting the most appropriate information to include in the hardcopy material. The
contents suggested in this section are intended as a guideline.

SYSTEM REQUIREMENTS REVIEW

SRR Format
Presenters — requirements definition team

Participants

• Customer representatives

• User representatives

• CCB

• Senior development team representative(s)

• QA representatives

Time — after requirements definition is complete and before the requirements analysis phase 
begins

Agenda — selective presentation of system requirements, highlighting operations concepts 
and critical issues (e.g., TBD requirements)

Materials Distribution
• The requirements and functional specifications document is distributed 1 to 2 weeks prior to

SRR

• Hardcopy material is distributed a minimum of 3 days before the SRR

Key Issues To Be Addressed
What is the effect of the TBD items?

What timetable has been established for resolving TBD items?

Have all external interface requirements been defined?

Are operational methods and performance constraints understood (e.g., timing, accuracy)?

Is the project feasible, given the constraints on and assumptions about available resources?

SRR Hardcopy Material
An outline and suggested contents of the SRR hardcopy material are presented in Figure 7-2.
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1. Agenda — outline of review material

2. lntroduction — purpose of system and background of the project

3. Requirements summary — review of top-level (basic) requirements developed to form 
the functional specifications
a. Background of requirements — overview of project characteristics and major events
b. Derivation of requirements — identification of input from project office, support 

organization, and system engineering organization used to formulate the requirements:
support instrumentation requirements document (SIRD), memoranda of information 
(MOIs), and memoranda of understanding (MOUs)

c. Relationship of requirements to Ievel of support provided — typical support, critical 
support, and special or contingency support

d. Organizations that provide system and support input and receive system output
e. Data availability — frequency, volume, and format
f. Facilities — target computing hardware and environment characteristics
g. Requirements for computer storage, failure/recovery, operator interaction, system error 

recovery, and diagnostic output
h. Requirements for support and test software — data simulators, test programs, and 

utilities
i. Overview of the requirements and functional specifications document — its evolution, 

including draft dates and reviews and outline of contents

4. lnterface requirements — summary of human, special-purpose hardware, and 
automated system interfaces, including references to interface agreement documents 
(IADs) and interface control documents (ICDs)

5. Performance requirements — system processing speed, system response time, system 
failure recovery time, and output data availability

6. Environmental considerations — special computing capabilities, e.g., graphics, 
operating system Iimitations, computer facility operating procedures and policies, support 
software limitations, database constraints, resource limitations, etc.

7. Derived system requirements — Iist of those requirements not explicitly called out in 
the requirements document but representing constraints, Iimitations, or implications that 
must be satisfied to achieve the explicitly stated requirements

8. Operations concepts
a. High-level diagrams of operating scenarios showing intended system behavior from the 

user's viewpoint
b. Sample input screens, menus, etc.; sample output displays, reports, plots, etc; critical 

control sequences

9. Requirements management approach
a. Description of controlled documents, including scheduled updates
b. Specifications/requirements change control procedures
c. System enhancement/maintenance procedures

10. Personnel organization and interfaces

11. Milestones and suggested development schedule

12. Issues, TBD items, and problems — a characterization of all outstanding requirements 
issues and TBDs, an assessment of their risks (including the effect on progress), and a 
course of action to resolve them, including required effort, schedule, and cost

Figure 7-2. SRR Hardcopy Material



7-4

SOFTWARE SPECIFICATIONS REVIEW

SSR Format
Presenters — software development team

Participants

• Requirements definition team

• Customer representatives

• User representatives

• QA representatives for both teams

• CCB

Time — after requirements analysis is completed and before preliminary design is begun

Agenda — selective presentation of the results of requirements analysis, directed primarily 
toward project management and the end-users of the system

Materials Distribution
• The requirements analysis report and software development/management plan are 

distributed 1 to 2 weeks prior to SSR

• Hardcopy material is distributed a minimum of 3 days before the SSR

Key Issues To Be Addressed
Have all requirements and specifications been classified (as mandatory, derived, "wish list", 

information only, or TBD)?

Is the reuse proposal realistic in view of software availability and cost drivers?

Is the selected system architecture an appropriate framework for satisfying the requirements?

Are the requirements and functional specifications testable as written?

Have all requirements issues and technical risks been addressed?

Is the foundation adequate to begin preliminary design?

SSR Hardcopy Material
An outline and suggested contents of the SSR hardcopy material are presented in Figure 7-3.
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1. Agenda — outline of review material

2. Introduction — background of the project and purpose of system

3. Analysis overview — analysis approach, degree of innovation required in analysis, special 
studies, and results

4. Revisions since SRR — changes to operations concepts, requirements, and functional  
specifications effected following the SRR

5. Reusable software summary
a. Key reuse candidates — identification of existing software components that satisfy 

specific system functional specifications exactly or that will satisfy them after 
modification

b. Overall architectural concept for the system
c. Matrix of requirements to be fulfilled by reused components

6. Classification summary
a. List of requirements and functional specifications with their assigned classifications 

(mandatory, derived, "wish list", information only, or TBD)
b. Problematic specifications — identification and discussion of conflicting, ambiguous, 
i nfeasible, and untestable requirements and specifications
c. Unresolved requirements/operations issues, including the dates by which resolutions to 

TBDs are needed

7. Functional specifications
a. High-level data flow diagrams showing input, transforming processes, and output
b. Data set definitions for interfaces to the system

8. Development considerations
a. System constraints — hardware availability, operating system limitations, and support 

software limitations
b. Utility, support, and test programs — Iist of auxiliary software required to support 

development, e.g., data simulators, special test programs, software tools, etc.
c. Testing requirements
d. Development assumptions

9. Risks, both to costs and schedules — includes risks related to TBD or changing 
requirements as well as technical risks

10. Summary of planned prototyping efforts needed to resolve technical risks, including 
the goals and schedule for each effort

11. Personnel organization and interfaces

12. Milestones and schedules — includes development life cycle (phase start and finish 
dates), schedule for reviews (internal and external), build/release dates, delivery dates of 
required external interfaces, schedule for integration of externally developed software and 
hardware

Figure 7-3. SSR Hardcopy Material



7-6

PRELIMINARY DESIGN REVIEW

PDR Format
Presenters — software development team

Participants

• Requirements definition team

• QA representatives from both groups

• Customer interfaces for both groups

• User representatives

• CCB

Time — after the functional design is complete and before the detailed design phase begins

Agenda — selective presentation of the preliminary design of the system.  The materials 
presented at PDR do not necessarily show the technical depth that the development team has 
achieved during the preliminary design phase (e.g., presentation of operating scenarios should
be limited to the nominal operating and significant contingency cases).  Full details of the 
technical effort are documented in the preliminary design report

Materials Distribution
• The preliminary design report is distributed at least 1 week prior to PDR

• Hardcopy material is distributed a minimum of 3 days before PDR

Key Issues To Be Addressed
Have alternative design approaches been examined?
Are all requirements traceable to subsystems in the functional design?
Is the subsystem partitioning sensible in view of the required processing?
Are all interface descriptions complete at both the system and subsystem level?
Are operational scenarios completely specified?
Is the error handling and recovery strategy comprehensive?
Is the estimate of resources realistic?
Is the schedule reasonable?
Have technical risks, including any remaining TBD requirements, been adequately addressed?
Has the design been elaborated in baseline diagrams to a sufficient level of detail? (Reference
2

presents information on level of detail)
Does the design facilitate testing?

PDR Hardcopy Material
An outline and suggested contents of the PDR hardcopy material are presented in Figure 7-4.
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1. Agenda — outline of review material

2. Introduction — background of the project and system objectives

3. Design overview
a. Design drivers and their order of importance (e.g., performance, reliability, hardware, 

memory considerations, programming language, etc.)
b. Results of reuse tradeoff analyses (at the level of subsystems and major components)
c. Changes to the reuse proposal since the SSR
d. Critique of design alternatives
e. Diagram of selected system design.  Shows products generated, interconnections among 

subsystems, external interfaces.  Emphasis should be on the differences between the 
system to be developed and existing, similar systems

f. Mapping of external interfaces to ICDs and ICD status

4. System operation
a. Operations scenarios/scripts — one for each major product that is generated.  Includes 

the form of the product and the frequency of generation.  Panels and displays should be 
annotated to show what various selections will do and should be traced to a subsystem

b. System performance considerations

5. Major software components — one diagram per subsystem

6. Requirements traceability matrix mapping requirements to subsystems

7. Testing strategy
a. How test data are to be obtained
b. Drivers/simulators to be built
c. Special considerations for Ada testing

8. Design team assessment  — technical risks and issues/problems internal to the software 
development effort; areas remaining to be prototyped

9. Software development/management plan — brief overview of how the development 
effort is conducted and managed

10. Software size estimates — one slide

11. Milestones and schedules — one slide

12. Issues, problems, TBD items beyond the control of the software development team
a. Review of TBDs from SSR
b. Dates by which TBDs/issues must be resolved

Figure 7-4. PDR Hardcopy Material
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CRITICAL DESIGN REVIEW

CDR Format
Presenters — software development team

Participants

• Requirements definition team

• QA representatives from both groups

• Customer interfaces for both groups

• User representatives

• CCB

Attendees should be familiar with the project background, requirements, and design.

Time — after the detailed design is completed and before implementation is begun

Agenda — selective presentation of the detailed design of the system.  Emphasis should be 
given to changes to the high-level design, system operations, development plan, etc. since 
PDR.  Speakers should highlight these changes both on the slides and during their 
presentations, so that they become the focus of the review

Materials Distribution
• The detailed design document should be distributed at least 10 days prior to CDR

• CDR hardcopy material is distributed a minimum of 3 days in advance

Key Issues To Be Addressed
Are all baseline diagrams complete to the subroutine level?

Are all interfaces — external and internal — completely specified at the subroutine level?

Is there PDL or equivalent representation for each subroutine?

Will an implementation of this design provide all the required functions?

Does the build/release schedule provide for early testing of end-to-end system capabilities?

CDR Hardcopy Material
An outline and suggested contents of the CDR hardcopy material are presented in Figure 7-5. 
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1. Introduction — background of the project, purpose of the system, and an agenda 
outlining review materials to be presented

2. Design overview — major design changes since PDR (with justifications)
a. Design diagrams, showing products generated, interconnections among subsystems, 

external interfaces
b. Mapping of external interfaces to ICDs and ICD status

3. Results of prototyping efforts

4. Changes to system operation since PDR
a. Updated operations scenarios/scripts
b. System performance considerations

5. Changes to major software components since PDR (with justifications)

6. Requirements traceability matrix mapping requirements to major components

7. Software reuse strategy
a. Changes to the reuse proposal since PDR
b. New/revised reuse tradeoff analyses
c. Key points of the detailed reuse strategy, including software developed for reuse in 

future projects
d. Summary of RSL use — what is used, what is not, reasons, statistics

8. Changes to testing strategy
a. How test data are to be obtained
b. Drivers/simulators to be built
c. Special considerations for Ada testing

9. Required Resources — hardware required, internal storage requirements, disk space, 
impact on current computer usage, impacts of compiler

10. Changes to the software development/management plan since PDR

11. Implementation dependencies (Ada Projects) — the order in which components 
should be implemented to optimize unit/package testing)

12. Updated software size estimates

13. Milestones and schedules including a well thought-out build plan

14. Issues, risks, problems, TBD items
a. Review of TBDs from PDR
b. Dates by which TBDs and other issues must be resolved

Figure 7-5. CDR Hardcopy Material
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OPERATIONAL READINESS REVIEW

ORR Format
Presenters — operations support team and development team

Participants

• User acceptance test team

• Requirements definition, software development, and software maintenance representatives

• QA representatives from all groups

• Customer interfaces for all groups

• CCB

Time — after acceptance testing is complete and 90 days before operations start

Agenda — selective presentation of information from the hardcopy material, omitting details 
that are more effectively communicated in hardcopy form and highlighting critical issues

(e.g., items 7 and 8 from Figure 7-6)

Materials Distribution
•  ORR hardcopy material is distributed a minimum of 5 days before ORR

Key Issues To Be Addressed
What is the status of required system documentation?

What is the status of external interface agreements?

Were the methods used in acceptance testing adequate for verifying that all
requirements have been met?

What is the status of the operations and support plan?

Is there sufficient access to necessary support hardware and software?

Are configuration control procedures established?

What contingency plans to provide operational support have been addressed?

ORR Hardcopy Material
An outline and suggested contents of the ORR hardcopy material are presented in Figure 7-6.
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1. Introduction — purpose of the system and outline of review material

2. System requirements summary — review of top-level (basic) requirements
a. Background of requirements — overview of project characteristics, major events, and 

support
b. Derived requirements (updated from SRR)
c. Relationship of requirements to support provided — typical, critical, and special or 

contingency support
d. Operational support scenarios
e. Relationship of requirements matrix, e.g., of top-level requirements to operational 

support scenarios
f. Organizational interfaces, e.g., that provide system and support input and receive 

system output
g. Data availability for the operating scenarios — frequency, volume, and format
h. Facilities — computing hardware, environment characteristics, communications 

protocols, etc.
i. General system considerations — high-level description of requirements for computer 

storage, graphics,and failure/recovery; operator interaction; system error recovery and 
diagnostic output; etc.

j. Support and test software considerations — high-Ievel description of requirements for 
data simulators, test programs, and support utilities

3. Summary and status of IADs — status of all interface documents with external 
organizations

4. Support system overview
a. Major software components — purpose, general characteristics, and operating scenarios 

supported by programs and subsystems
b. Testing philosophy
c. Requirements verification philosophy — demonstration of methods used to ensure that 

the software satisfies all system requirements; matrix showing relation between 
requirements and tests

d. Testing and performance evaluation results — summary of system integration and 
acceptance test results; evaluation of system performance measured against 
performance requirements

e. System software and documentation status — summary of completed work packages 
and list of incomplete work packages with scheduled completion dates and explanation 
of delays

5. Status of operations and support plan
a. Organizational interfaces — diagrams and tables indicating organizational interfaces, 

points of contact, and responsibilities; data flow and media (forms, tapes, voice, Iog)
b. Data availability — nominal schedule of input and output data by type, format, 

frequency, volume, response tlme, turnaround time
c. Facilities — nominal schedule of access to computers, support and special-purpose 

hardware, operating systems, and support software for normal, critical, emergency, and 
contingency operations

d. Operating scenarios — top-level procedures, processing timelines, and estimated 
resources required

e. Documentation of operations procedures — operations and support handbooks and 
update procedures

Figure 7-6. ORR Hardcopy Material (1 of 2)



7-12

6. System management plan
a. Configuratlon control procedures — explanation of step-by-step procedures for 

maintaining system integrity, recovering from loss, fixing faults, and enhancing system
b. Enhancement/maintenance procedures — initiation, forms, reviews, approval, and 

authorization
c. Reporting/testing evaluation procedures — forms, reviews, approval, authorization, 

distribution
d. System performance evaluation procedures — for ongoing evaluation

7. lssues, TBD items, and problems—a characterization of all those items affecting normal 
operations as perceived by the developers and users; an assessment of their effect on 
operations; and a course of action to resolve them, including required effort, schedule, and 
cost

8. Contingency plans — a priority Iist of items that could prevent normal operations, 
including the steps necessary to work around the problems, the defined levels of operations 
during the workarounds, and the procedures to attempt to regain normal operations

9. Milestones and timeline of events — diagrams, tables, and scripts of events; operating 
scenarios; maintenance; enhancement; reviews; training

Figure 7-6. ORR Hardcopy Material (2 of 2)
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AUDITS

The purpose of an audit is to provide an independent assessment of the software project — its condition, its
problems, and its likelihood of reaching successful completion.  The audit may be prompted by indications
of problems or by lack of progress, or it may be fulfilling a routine contractual requirement.  Occurrence of
one or more of the following conditions on a project should automatically trigger an audit:

• There are significant (> 25%) deviations from planned staffing, resources, or schedule after CDR

• There is a high turnover of staff (>30%)

• It is apparent that a delivery schedule will not be met

• The number of failed tests increases toward the end of system or acceptance testing

• It is determined that the system does not fulfill a critical capability

• There is evidence that system interfaces will not be met at delivery

An individual or, preferably, a group outside the development team is charged with conducting this
examination.  It is essential for the audit team to obtain a clear written statement of the specific objective of
the audit at the start.

When preparing to conduct an audit, several key questions must be addressed:

What is the scope of the audit?  Is the entire development effort being examined or only some 
particlar component of the project?

What is the final form the audit should take — a presentation, a written report, or both?

To whom will the results be presented?

What is the timetable for completing the audit?

What staff and support resources will be available for the audit work?

Have the development team and its management been informed that an audit is scheduled?

Have specific individuals on the development team been identified as principal contacts for the audit  
group?

What constraints exist on the work of the audit team regarding access to documents or 
individuals?

Where are the sources for documentation related to the project (requirements statements, plans, etc.)?

Are there specific auditing standards or guidelines that must be observed?

The answers to these questions will form the basis for planning the audit task.  Sources of information
include personal interviews with managers, team members, and individuals who interact with the
development team.  Documentation must be reviewed to understand the origin of the requirements and the
plans and intermediate products of the development team.

Four steps are involved in conducting the audit of a software development project:

• Determine the current status of the project

• Determine whether the development process is under control

• Identify key items that are endangering successful completion

• Identify specific actions to put the project onto a successful course
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AUDIT STEP #1 — DETERMINE THE CURRENT STATUS
OF THE PROJECT

Audit Question Audit Team's Checklist

Given the size and nature of
the problem, where should
the project be?

• Consult Table 3-1 and project histories data base (see Section 6)
for comparison data on similar projects:

— Percentage of effort and schedule consumed thus far
— Percentage of effort by type of activity
— Percentage of code developed thus far

According to the development/
management plan, where
should the project be?

•  Refer to the software development/ management plan for the
 project:

— What activities should be current?
— How should it be staffed?
— What intermediate products should have been delivered?
— What milestones should have occurred?

Where does the project
actually stand now?

•  From interviews and documentation, identify the following:
current phase, milestones reached, documents delivered,
activity levels, staff composition, project budget, and
actual expenditures

AUDIT STEP #2 — DETERMINE WHETHER THE DEVELOPMENT 
PROCESS IS UNDER CONTROL

Audit Question Audit Team's Checklist

Is the problem well understood
and stable?

•  Refer to review hardcopy materials (Figs. 7-2, 7-3, 7-4, 7-5) and
the Requirements Analysis Report (Figure 4-4) for significance
of TBD items

•  Determine the number of times project size has been reestimated
and the extent of these revisions

•  From the technical manager, identify the number and extent of
specification modifications received by the development team

Is the development/management
plan being followed?

•  Compare the development/management plan to actual
development to determine whether

— The schedule is being followed
— Milestones have been met
— The plan is being updated (see Section 2)
— Actual and planned staffing levels agree

Is adequate direction being
provided?

• Interview team leaders, technical managers, and administrative
managers to determine whether there is agreement on

— Project scope and objectives
— Expectations and responsibilities at each level
— Progress of the development effort to date
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AUDIT STEP #3 — IDENTIFY KEY ITEMS THAT ARE ENDANGERING
SUCCESSFUL COMPLETION

Audit Question Audit Team's Checklist

Are resources adequate? • Time — determine if lack of schedule time (regardless of staff) is
a concern by comparison to past projects (Section 6) and by time
estimates (Section 3)

• Staff — compare actual with desired staffing characteristics as to
level of effort (Section 3), staffing pattern (Figure 6-4), team
size (Table 3-5), and composition (Table 3-6)

• Computer — compare actual with expected utilization
(Figures3-2 and 3-3); from interviews and computer facility
schedules, determine degree of access to computer and level of
service provided

• Support — compare actual level of support services to typical
levels

Is the development process
adequate?

• Determine whether technical standards and guidelines are being
followed for design, coding, and testing

• Determine whether available tools and methodologies are being
used

• From interviews, determine the procedures for reporting and
resolving problems

Are the organization and
planning adequate?

• From interviews, assess the reporting relationships that exist, the
team morale and turnover, and the pattern of delegating work

• Assess the quality, completeness, and practicality of the software
development/management plan (see Section 2)

• From interviews and documentation (Sections 2 and 7), identify
the extent of contingency planning

AUDIT STEP #4 — IDENTIFY SPECIFIC ACTIONS TO PUT THE
PROJECT ON A SUCCESSFUL COURSE

•  Recommended actions must be based on results of audit steps 1, 2, and 3

•  For general problem of inadequate progress, some options are as follows

– Stop development; generate a realistic plan before continuing
– Replace junior personnel with senior staff
– Increase visibility by improving identification and review of intermediate

products
– Provide training
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APPENDIX A — SEL SOFTWARE DEVELOPMENT
ENVIRONMENT

PROCESS CHARACTERISTICS   AVG. HIGH LOW

Duration (months) 24   43 19

Effort (staff-years) 14   32 3

Size (1000 source lines of code) 107 246 31

Staff (full time equivalent)

    Average    8   15 4

    Peak 13   30 5

    Individuals 22   44 6

Application Experience (years)

    Managers 9   15 4

    Technical Staff   4   7 2

Overall Experience (years)

    Managers 14   19 10

    Technical Staff   6   9 4

N O T E S : Type of software:  Scientific, ground-based, interactive graphic
Machines: IBM 4341 and DEC VAX 780, 8600, and 8810
Sample: 10 FORTRAN (with 15% in Assembler) and  3 Ada projects
Staff-year  = 1864 effort hours
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AGSS attitude ground support system

ATR Assistant Technical Representative

CCB configuration control board

CDR critical design review

CM configuration management

COBE Cosmic Background Explorer

CPU central processing unit

ERBS Earth Radiation Budget Satellite

GOADA GOES Dynamics Simulator in Ada

GOES Geostationary Operational Environmental Satellite

GRO Gamma Ray Observatory

IAD interface agreement document

ICD interface control document

I/O input/output

IV&V independent verification and validation

LOC lines of code

MOI memorandum of information

MOU memorandum of understanding

ORR operational readiness review

PDL program design language (pseudocode)

PDR preliminary design review

QA quality assurance

RSL reusable software library

SEF subjective evaluation form

SEL Software Engineering Laboratory

SIRD support instrumentation requirements document

SLOC source lines of code

SME Software Management Environment

SRR system requirements review

SSR software specifications review

TBD to be determined

TCOPS Trajectory Computation and Orbital Products System

GLOSSARY
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