¢ TWa
o
®e

g820¥y
¥, .
STwor%

ANAGES

For additional information please contact the
Software Program Managers Network

(703) 521-5231 = Fax (703) 521-2603
E-Mail: spmn@aol.com
http://www.spmn.com

I ITIIIITIITIIITI T IIT I I I I I I IV,

LiTTLE BoOK
OF
TESTING

VoLuMmE |1

IMPLEMENTATION
TECHNIQUES

TW
of AR

48208y
Srwor%*

s C
ANacE®

JUNE 1998

THE AIRLIE SOFTWARE COUNCIL

"T'his publication was prepared for the

Software Program Managers Network
4600 North Fairfax Drive, Suite 302
Arlington, VA 22203

The ideas and findings in this publication should not be
construed as an official DoD position. It is published in the
interest of scientific and technical information exchange.

ot St

Norm Brown
Director, Software Program Managers Network

Copyright © 1998 by Computers & Concepts Associates

"This work was created by Computers & Concepts Associates
in the performance of Space and Naval Warfare Systems
Command (SPAWAR) Contract Number N00039-94-C-0153
for the operation of the Software Program Managers

Network (SPMN).

This guidebook is one of a series of guidebooks
published by the Software Program Managers Network
(SPMN). Our purpose is to identify best management
and technical practices for software development and
maintenance from the commercial software sector, and
to convey these practices to busy program managers
and practitioners. Our goal is to improve the bottom-
line drivers of software development and
maintenance—cost, productivity, schedule, quality,
predictability, and user satisfaction.

The Airlie Software Council was convened by a

Department of the Navy contractor in 1994 as a focus
group of software industry gurus supporting the SPMN
and its challenge of improving software across the
many large-scale, software-intensive systems within the
Army, Navy, Marine Corps, and Air Force. Council
members have identified principal best practices that
are essential to managing large-scale software
development and maintenance projects. The Council,
which meets quarterly in Airlie, Virginia, is comprised of
some 20 of the nation's leading software experts.
These little guidebooks are written, reviewed, generally
approved, and, if needed, updated by Council members.
Your suggestions regarding this guidebook, or others
that you think should exist, would be much
appreciated.

THE PURPOSE OF THIS
LITTLE BOOK

The Software Program Managers Network (SPMN)
provides resources and best practices for software
managers. The SPMN offers practical, cost-effective
solutions that have proved successful on projects in
government and industry around the world.

This second volume in the testing series answers the
question:“How can | test software so that the end product
performs better, is reliable, and allows me, as a manager, to
control cost and schedule?” Implementing the basic testing
concepts and ten testing rules contained in this booklet
will significantly improve your testing process and result in
better products.

It is not easy to change the way systems and software are
tested. Change requires discipline, patience, and a firm
commitment to follow a predetermined plan. Management
must understand that so-called silver bullets during testing
often increase risk, take longer, and result in a higher-cost
and lower-quality product. Often what appears to be the
longest testing process is actually the shortest, since
products reach predetermined levels of design stability
before being demonstrated.

Managers can implement the concepts and rules in this
guidebook to help them follow a low-risk, effective test
process. An evaluation of how you test software against
these guidelines will help you identify project risks and
areas needing improvement. By using the principles
described in this guide, you can structure a test program
that is consistent with basic cost, schedule, quality, and user

satisfaction requirements.

o St

Norm Brown
Executive Director

INTRODUCTION

Testing by software execution is the end of the
software development process. When projects are
discovered to be behind schedule, a frequent worst-
practice way out is to take shortcuts with test. This is a
worst practice because effective test by software
execution is essential to delivering quality software
products that satisfy users’ requirements, needs, and
expectations. When testing is done poorly, defects that
should have been found in test are found during
operation, with the result that maintenance costs are
excessive and the user-customer is dissatisfied. When a
security or safety defect is first found in operation, the
consequences can be much more severe than
excessive cost and user dissatisfaction.

Although metrics show that the defect removal
efficiency of formal, structured peer reviews is
typically much higher than that of execution test, there
are certain types of errors that software-execution test
is most effective in finding. Full-path-coverage unit test
with a range of path-initiating variable values will find
errors that slip through code inspections. Tests of the
integrated system against operational scenarios and
with high stress loads find errors that are missed with
formal, structured peer reviews that focus on small
components of the system. This book describes testing
steps, activities, and controls that we have observed on
projects.

y /-

Michael W. Evans
President
Integrated Computer Engineering, Inc.

Frash i

Frank J. McGrath, Ph.D.
Technical Director
Software Program Managers Network

BASIC TESTING CONCEPTS

This section presents concepts that are basic to
understanding the testing process. From the start it is
critical that managers, developers, and users
understand the difference between debugging and
testing.

e Debugging is the process of isolating and
identifying the cause of a software problem, and
then modifying the software to correct the
problem. This guidebook does not address
debugging principles.

e Testing is the process of finding defects in
relation to a set of predetermined criteria or
specifications. The purpose of testing is to
prove a system, software, or software
configuration doesn’t work, not that it does.

There are two forms of testing: white box testing and
black box testing. An ideal test environment alternates
white box and black box test activities, first stabilizing
the design, then demonstrating that it performs the
required functionality in a reliable manner consistent
with performance, user, and operational constraints.

White box testing is conducted on code components
which may be software units, computer software
components (CSCs), or computer software
configuration items (CSCIs). These tests exercise the
internal structure of a code component, and include:

e Execution of each statement in a code
component at least once

e Execution of each conditional branch in the code
component

e Execution of paths with boundary and out-of-
bounds input values

e \Verification of the integrity of internal interfaces

< \Verification of architecture integrity across a
range of conditions

< \Verification of database design and structure

White box tests verify that the software design is valid
and that it was built according to the specified design.
White box testing traces to configuration management
(CM)-controlled design and internal interface
specifications. These specifications have been
identified as an integral part of the configuration
control process.

Black box testing is conducted on integrated,
functional components whose design integrity has
been verified through completion of traceable white
box tests. As with white box testing, these
components include software units, CSCs, or CSCls.

Black box testing traces to requirements focusing on
system externals. It validates that the software meets
requirements without regard to the paths of execution

5

BASIC TESTING CONCEPTS

(cont.)

taken to meet each requirement. It is the type of test
conducted on software that is an integration of code
units.

The black box testing process includes:

< \Validation of functional integrity in relation to
external stimuli

< \Validation of all external interfaces (including
human) across a range of nominal and anomalous
conditions

e Validation of the ability of the system, software,
or hardware to recover from or minimize the
effect of unexpected or anomalous external or
environmental conditions

< \Validation of the system’s ability to address out-
of-bound input, error recovery, communication,
and stress conditions

Black box tests validate that an integrated software
configuration satisfies the requirements contained in a
CM-controlled requirement or external interface
specification.

Ideally, each black box test should be preceded by a
white box test that stabilizes the design. You never
want to try to isolate a software or system problem by
executing a test case designed to demonstrate system
or software externals.

BASIC TESTING CONCEPTS

(cont.)

Figure 1 illustrates the testing process. Testing is a
continuum of verification and validation activities
conducted continuously from the point where a

product is defined until it is finally validated in an
installed system configuration.

Testing need not be performed on a computer. Projects
that regularly apply structured inspections not only test

products against criteria at the point where they are
produced, but also reduce the rework rate from 44
percent to 8 percent. Use of inspections as a form of
testing can reduce the cost of correction up to 100
times. A complete test program consists of the
following nine discrete testing levels, each feeding the

next:

Documentation

Test Levels Test Activity Test Type Basis for Testing Test Responsibility Test Focus
Structured Non-Computer-Based A q .
Level 0 Inspections Tost Various Inspection Team Various
Level 1 |Computer Software | White Box Testing | SDF Developer Software Unit Design
Unit Testing
Level 2 |CSCI Integration White Box Testing | SWDD Independent Test CSCI Design/Architecture
Testing
Level 3 | CSCI Qualification Black Box Testing SRS Independent Test CSCI Requirements
Testing
Level 4 |CSCI/HWCI White Box Testing | SSDD Independent Test System Design/Architecture
Integration Testing
Level 5 |System Testing Black Box Testing SSS Independent Test System Requirements
Level 6 |DT&E Testing Black Box Testing User Manuals Acquirer Test Group User Manual Compliance
Level 7 |OT&E Testing Black Box Testing ORD or User Operational Test Operational Requirements
Requirements Document
Level 8 |Site Testing Black Box Testing Transition Plan Site Installation Team | Site Requirements
(Site Configuration)

Figure 1. Test Levels

Key to Terms:

DT&E-Development Test and
Evaluation

HWCI-Hardware
Configuration Item

ORD-Operational
Requirements Document

OT&E-Operational Test and
Evaluation

SDF-Software Design File

SRS-Software Requirements
Specifications
SSDD-System Subsystem
Design Document
SSS-System Segment
Specification

SWDD-Software Design
Document

BASIC TESTING CONCEPTS

(cont.)

Level 0—These tests consist of a set of structured
inspections tied to each product placed under
configuration management. The purpose of Level O tests
is to remove defects at the point where they occur, and
before they affect any other product.

Level 1—These white box tests qualify the code against
standards and unit design specification. Level 1 tests
trace to the Software Design File (SDF) and are usually
executed using test harnesses or drivers. This is the
only test level that focuses on code.

Level 2—These white box tests integrate qualified CSCs
into an executable CSCI configuration. Level 2 tests
trace to the Software Design Document (SWDD). The
focus of these tests is the inter-CSC interfaces.

Level 3—These black box tests execute integrated
CSCls to assure that requirements of the Software
Requirements Specification (SRS) have been
implemented and that the CSCI executes in an
acceptable manner. The results of Level 3 tests are
reviewed and approved by the acquirer of the product.

Level 4—These white box tests trace to the System
Subsystem Design Document (SSDD). Level 4 tests
integrate qualified CSCls into an executable system
configuration by interfacing independent CSCls and
then integrating the executable software configuration
with the target hardware.

Level 5—These black box tests qualify an executable
system configuration to assure that the requirements of
the system have been met and that the basic concept of
the system has been satisfied. Level 5 tests trace to the
System Segment Specification (SSS). This test level
usually results in acceptance or at least approval of the
system for customer-based testing.

Level 6—These black box tests, planned and conducted
by the acquirer, trace to the user and operator manuals
and external interface specifications. Level 6 tests
integrate the qualified system into the operational
environment.

Level 7—These independent black box tests trace to
operational requirements and specifications. Level 7
tests are conducted by an agent of the user to assure
that critical operational, safety, security, and other
environmental requirements have been satisfied and the
system is ready for deployment.

Level 8—These black box tests are conducted by the
installation team to assure the system works correctly
when installed and performs correctly when connected
to live site interfaces. Level 8 tests trace to installation
manuals and use diagnostic hardware and software.

TESTING RISKS

AND SOLUTIONS

The process of testing must not be compromised by the of a problem can be minimized or avoided. This level of
occurrence of preventable problems. In most cases, the risk management requires that common testing risks be
effects of problems can be minimized by the early execution identified early, a mitigation strategy identified, and
of a preplanned mitigation strategy. Risk management resources reserved to implement the strategy if the need
requires a management belief that risk is a problem that has arises. Figure 2 examines impact and planning factors
not yet occurred. Through risk management, the full effect for risk areas commonly encountered during testing.
RISK AREA IMPACT PLANNING
1. Schedule difficulty due to extended development and Insufficient time to test software 2 resulting in schedule slip Phase software testing into build testing
code time
2. An inability to develop executable test cases from Test scripts not adequate repre sentation of software execution ~ Phase development personnel into test planning activities
procedures characteristics
3. Insufficient interface definition and inability to duplicate Software systems with known | problems delivered to customer ~ Hard code test scripts readable through simulator
exact test conditions
4. Ambiguous user specifications or system operator Procedures do not match syste ‘m support requirements Complete high-level test plan early and fill in details as system
instructions or software specifications become available
5. Schedule delay between system releases when new Significant schedule impacts di ue to poor initial performance Schedule informal software burn-in period with each release
software configurations stabilize of software releases
6. Delays associated with correction of problems Repeated slips due to problem | correction delays Plan for software configuration management and overlap
system releases
7. Baselines lost during development and System releases not controlled or of unknown content Plan, implement, and integrate strong, effective configuration
corrections lost during test management
8. Inadequate hardware availability or reliability Significant hardware-caused ¢ lelays on the software schedule Find alternate hardware source of simulation facility at begin-
ning of project
9. a. Insufficient manpower available Excessive overtime required Provide for manpower pool, sharing resources between test,
development, and support
b. Loss of key individual Project delay, poor productiviy v, inadequate support Find and train key man backups early in project
10. Diversion of key resource Scheduling impacts and projec ct delays Back up all planned resources

Figure 2. Predictable Resource and Test & Integration Problems 13

TESTING QUESTIONS THAT

MANAGERS SHOULD
BE ABLE TO ANSWER

TESTING QUESTIONS THAT MANAGERS SHOULD BE ABLE TO
ANSWER:

1.

Have | defined, and do | understand, my overall
strategy for software testing?

Are the test planning requirements clearly
defined, consistent, assigned for development,
and supportable by the staff responsible for their
implementation?

Are the test methods and techniques defined, are
they consistent with the strategy, and can they be
implemented in the software environment?

Is each test activity traceable to a controlled set
of requirements and/or design data?

Are the configuration management control, and
quality disciplines adequate to support the test
strategies, methods, and techniques, and are they
really in place?

Do | know when to quit?

TEN COMMANDMENTS
OF TESTING

THE TEN COMMANDMENTS OF TESTING

1.

10.

Black box tests that validate requirements must
trace to approved specifications and be executed
by an independent organization.

Test levels must be integrated into a consistent
structure.

Don't skip levels to save time or resources: test
less at each level.

All test products configurations, tools, data, and
so forth, need CM during tests.

Always test to procedures.

. Change must be managed.

Testing must be scheduled, monitored, and
controlled.

All test cases have to trace to something that's
under CM.

You can't run out of resources.
Always specify and test to criteria.

RULE 1: Tests Must Be Planned, Scheduled, and
Controlled if the Process Is to Be Effective.

e Test planning is an essential management
function that defines the strategies and methods
to be used to integrate, test, and validate the
software product.

e Test planning defines how the process is
managed, monitored, and controlled.

e Planning of the software test environment is the
bottom of a complex planning tree that
structures and controls the flow of testing. The
planning tree shows the products move from
developer, through the software organization, to
the system organizations, and finally to the
acquirer and the operational test organizations.

e Test planning is “preparing for the future,” while
Test Plan implementation is “making sure we
have what we want when we get there”

e The test planning process must be consistent
from one level to the next. The Test Plan must be
consistent with the CM Plan, which must be
consistent with the standards, and so on.

e The control discipline must be a complete
representation of the Test Plan as adapted to the
specific needs of the project to which it is
applied.

THE TEST PLANNING TREE

Program Plan defines the program
requirements, obligations, strategies, constraints,
and delivery requirements and commitment. It
identifies test requirements to be completed
prior to delivery.

Test and Evaluation Management Plan usually
traces to user specifications. It sets the entire
testing strategy and practices.

System Engineering Management Plan (SEMP)
identifies engineering plans and methods,
engineering standards, management processes,
and systems for integration and test
requirements.

System Test Plan defines the system’s testing
plan, strategies, controls, and testing processes.
Test case requirements are discussed, and criteria
for success or failure are identified.

Software Development Plan describes what the
software project must accomplish, how these
software process and product standards must be
met, how the process must be managed and
controlled, and what the criteria are for overall
integration, test, and completion.

Program
Plan

Test and Evaluation
Management Plan

System Engineering
Management Plan

System
Test Plan

Software
Development
Plan

Software Test
Plan

Figure 3. The Test Planning Tree

Software Test
Description

Software Test
Procedure

Software Test
Case Definition

Software Test
Scenario

Test Case
Implementation

e Software Test Plan defines software integration
and test plans, strategies, software test controls
and processes, test case requirements, and test
case completion criteria.

e Software Test Description details the
requirements for individual test cases. This
description serves as the test case design
requirement.

e Software Test Procedure takes each test case and
provides a step-by-step definition of test
execution requirements traceable to a
requirement specification.

e Software Test Case Definition details the test
case design and specifies criteria for successful
and unsuccessful execution of a test step.

« Software Test Scenario identifies specific test
data, data sources, interface address or location,
critical test timing, expected response, and test
step to take in response to test condition.

* Test Case Implementation is the actual test case
ready for execution.

These plans may be rolled up into fewer individual
documents, or expanded based on project size, number
of organizations participating, size of risk and contract,
and customer and technical requirements of the test
program.

The test structure as documented in these plans must
be consistent with the overall strategy used—grand
design, incremental development, or evolutionary
acquisition.

< Increase schedule and budget predictability by
minimizing rework and redundant effort.

e Maintain traceability and operational integrity of
engineering products as they are produced and
changed, and maintain the relationship between
the formal documentation and the underlying
engineering information.

« Test planning is the joint responsibility of the
organization receiving the capability—either the
higher life cycle or the user organization that will
ultimately apply the product—and the
engineering organization that will build or
modify the product.

e The test planning process starts with a definition
by the ultimate user of the system of the level of
risk that is acceptable when the product is
delivered. The integration of the testing structure
disciplines helps assure the acceptability of the
product when it reaches the operational testing
levels.

e Assure that software is not debugged during
operational testing because of test shortcuts or
inadequacies at lower test levels.

Key guidelines for planning a test environment are:

< Improve probability that the delivered products
will meet the documented and perceived
requirements, operational needs, and
expectations of the user of the system.

e All test levels must trace to CM-controlled
engineering information, as well as to baselined
documentation that has been evaluated through a
structured inspection.

RULE 2: Execution Test Begins with White Box
Test of Code Units and Progresses through a
Series of Black Box Tests of a Progressively
Integrated System in Accordance with a

Predefined Integration Test Build Plan. « Atest level is not complete until all test cases are

run and a predetermined quality target is
reached.

« Software test flow must be documented in plans
and procedures.

e Traceability between test cases at each level must
be maintained, allowing tests at one level to
isolate problems identified at another.

e The integrity of the planned white-box, black-box
test sequence must not be violated to meet
budget or schedule.

« Software cannot be adequately tested if there is
no formal, controlled traceability of requirements
from the system level down to individual code
units and test cases.

e Test levels (see Figure 1) must be defined so that
they support partitioning that is consistent with
the project’s incremental or evolutionary
acquisition strategy.

< In the event of a failure at any test level, it must
be possible to back up a level to isolate the
cause.

RULE 3: All Components of a Test Must Be under
CM Control after They Have Been Verified by
Structured Peer Reviews.

During test, CM must provide:

* A way to identify the information approved for
use in the project, the owners of the information,
the way it was approved for CM control, and the
most recent latest approved release

* A means to assure that, before a change is made
to any item under configuration control, the
change has been approved by the CM change
approval process, which should include a
requirement that all impacts are known before a
change is approved

e An accessible and current record of the status of
each controlled piece of information that is
planned for use by test

e A build of each release, from code units to
integration test

e Arecord of the exact content, status, and version
of each item accepted by CM, and the version
history of the item

* A means to support testing of operational
software versions by exactly reproducing
software systems for tests with a known
configuration and a controlled set of test results

CM IMPLEMENTATION RULES DURING TESTING

CM should be an independent, centralized
activity, not buried within an engineering or
assurance organization.

CM can never be a bottleneck in the test
schedule, because the process will not be
followed.

CM can never be eliminated for any reason,
including the need to meet budget or schedule.

CM change control must receive reports of all
suspected and confirmed problems during
testing, and all problems must only be fixed in
accordance with a change control process
managed by CM.

CM must assure that changes to configuration-
controlled items that do not follow the CM
process cannot be made to systems under test,
including patches to binary code.

CM must not accept changes made to software
until all related documentation and other
configuration-controlled items affected by the
change have also been updated.

CM must have control of and responsibility for all
test builds from Level 2 and above.

CM must ensure that all releases of integrated
software from CM during test are accompanied
by a current, complete, and accurate Software
Version Description (SVD).

CM must verify that all new releases of test tools,
including compilers, are regression-tested prior to
release for use during testing.

CM must process every suspected or observed
problem, no matter how small.

CM must ensure that all tests trace to controlled
information that has been approved through a
binary quality gate.

CM staff during integration and test must have
the technical skills necessary to generate each
integration build delivered from CM for
integration test.

RULE 4: Testing Is Designed to Prove a System
Doesn’t Work, Not to Prove It Does.

A large, integrated software system cannot be
exhaustively tested to execute each path over the
full range of path-initiating conditions. Therefore,
testing must consist of an integrated set of test
levels, as described in Figure 1. These testing
levels maximize the coverage of testing against
the cost across all design and requirements.

Criteria must be used to evaluate all test
activities.

All tests executed that trace to a requirement
must be executed in three ways:

— Using a nominal data load and valid
information

— Using excessive data input rates in a
controlled environment

— Using a preplanned combination of nominal
and anomalous data

The ideal test environment is capable of driving a
system to destruction in a controlled fashion. For
example, the data aids and data combinations
must be varied until the system no longer
executes in an acceptable manner. The point at

which system support becomes unacceptable
must be identified and documented.

e Tests must be run at all levels to test not only

RULE 5: All Software Must Be Tested Using
Frequent Builds of Controlled Software, with
Each Build Documented in SVDs and Change
Histories Documented in Header Comments for

nominal conditions but also all potential test
failure conditions documented in controlled
specifications.

— This is critical even though the test
environment may be difficult to
establish.

No observed testing problem, however small,
must ever be ignored or closed without
resolution.

All test case definitions must include success and
failure criteria.

Tests must be made against scenarios (timed
sequences of events) designed to cover a broad
range of real-world operational possibilities as
well as against static system requirements.

System test must be made on the operational
hardware/operating system (OS) configuration.

Each Code Unit.

Build selection and definition must be based on
availability of key test resources, software unit
build and test schedules, the need to integrate
related architectural and data components into a
single test configuration, availability of required
testing environments and tools, and the
requirement to verify related areas of
functionality and design.

Builds must be ordered to minimize the need to
develop throw-away, test-driver software.

Builds must not be driven by a need to
demonstrate a capability by a certain date (a
form of political build scheduling).

Build definition must consider technical,
schedule, and resource factors prior to the
scheduling of a test session.

Test cases used during frequent builds must be
planned (structured in a Test Plan, documented in
a procedure), traceable to controlled
requirements or design, and executed using

controlled configurations, just as with builds that
are not frequent.

Test support functions, such as CM integration
build and change approvals, must be staffed to a
sufficient level and must follow processes so that
they do not delay frequent integration builds and
tests.

The build planning must be dynamic and capable
of being quickly redefined to address testing and
product realities. For example, a key piece of
software may not be delivered as scheduled; a
planned external interface may not be available
as planned; a hardware failure may occur in a
network server.

Frequent builds find integration problems early,
but they require substantial automation in CM,
integration, and regression test.

RULE 6: Test Tools Must Only Be Built or
Acquired If They Provide a Capability Not
Available Elsewhere, or If They Provide Control,
Reproducibility, or Efficiency That Cannot Be
Achieved through Operational or Live Test
Sources.

e Test tools must be used prior to the point at
which the system is considered stable and
executing in a manner consistent with
specifications.

— This requirement reflects the need to control
test conditions and to provide a controlled
external environment in which predictability
and reproducibility can be achieved.

« Some test functions are best provided by
automated tools and can substantially lower the
cost of regression test during maintenance.

— For example, automating key build inputs
reduces operator requirements and the cost
of providing them during test sessions.

31

CLASSES OF TEST TOoOLS THAT EVERY PROGRAM SHOULD
CONSIDER

e Simulation When Test Is Done Outside the
Operational Environment—Drives system from
outside using controlled information and
environments. For example, it can be used to
exchange messages with the system under test,
or to drive a client/server application as though
there were many simultaneous users on many
different client workstations

e Emulation When Hardware Interfaces Are Not
Available—Software to perform exactly as
missing components in system configurations,
such as an external interface

e Instrumentation—Software tools that
automatically insert code in software, and then
monitors specific characteristics of the software
execution such as test coverage

* Test Case Generator—Identifies test cases to test
requirements and to achieve white box test
coverage

e Test Data Generator—Defines test information
automatically, based on the test case or scenario
definition

e Test Record and Playback—Records keystrokes
and mouse commands from the human tester,

RULES

and saves corresponding software output for
later playback and comparison with saved output
in regression test

Test Analysis—Evaluates test results, reduces
data, and generates test reports

FOR TEST TOOLS

Test tools must only be acquired and used if they
directly trace to a need in the Test Plan and/or
procedures, or if they will significantly reduce
the cost of regression test during the
maintenance phase.

All tools used and the data they act upon must
be under CM control.

Test tools must not be developed if there is a
quality COTS test tool that meets needs.

Plan test tool development, acquisition, and
deployment for completion well in advance of
any need for tool use item.

Test tools that certify critical components must
be certified using predefined criteria before
being used.

Always try to simulate all external data inputs,
including operator inputs, to reduce test cost and
increase test reproducibility.

33

QUESTIONS TO Ask WHEN DEFINING A TESTING
ENVIRONMENT AND SELECTING TEST METHODS OR TOOLS

1.

Have the proposed testing techniques and tools
been proven in applications of similar size and
complexity, with similar environments and
characteristics?

Does the test environment include the
hardware/OS configuration on which the
software will be deployed, and will the test tools
execute on this operational hardware/OS?

Do the proposed test methods and tools give the
customer the visibility into software quality that
is required by the contract?

Is there two-way traceability from system
requirements through design, to code units and
test cases?

Have the organizational standard test processes,
methods, and use of test tools been tailored to
the characteristics of the project?

RULE 7: When Software Is Developed by Multiple
Organizations, One Organization Must Be
Responsible for All Integration Test of the
Software Following Successful White Box Testing
by the Developing Organization.

Development tests—those that test units and
CSCs prior to integration—must be the
responsibility of the developers.

When development tests are complete,
inspections must be conducted to ensure the
process was followed; the requirements of the
Test Plan were successfully completed; the
software is documented adequately; the source
code matches the documentation; and the
software component is adequate to support
subsequent test activities.

All software builds that support test activities
subsequent to development testing must be built
under control of CM.

Testing subsequent to development testing must
be executed by an independent testing
organization. After development testing ends, any
changes to controlled configurations must be
evaluated and approved prior to incorporation in
the test configuration.

35

RULES FOR ORGANIZING TEST ACTIVITIES

A testing organization must be an integral part of
the program and software project plans from the
beginning, with staffing and resources allocated
to initiate early work.

While some testing will be done internally by the
engineering organizations, the white box and
black box test activities documented in Test Plans
and procedures must be executed by an
independent test organization.

Test organizations must be motivated to find
problems rather than to prove the products
under test work.

Test organizations must have adequate
guaranteed budget and schedule to accomplish
all test activities without any unplanned
shortcuts.

A tester must never make on-the-fly changes to
any test configuration. A tester’s role is to find
and report, not to fix. During testing, the role of
the tester is to execute the test case. All fixes
should be made by an organization responsible
for maintaining the software, after processing in
accordance with the change control process of
the program.

e Test organizations may delegate tasks such as test
planning, test development, tool development, or
tool acquisition to engineering, but responsibility,
control, and accountability must reside with the
test organization.

e The relationship between testing and other
program and software organizations must be
clear, agreed to, documented, and enabled
through CM.

37

RULE 8: Software Testing Is Not Finished until the
System Has Been Stressed above Its Rated
Capacity and Critical Factors—Closure of Safety
Hazards, Security Controls, Operational Factors—
Have Been Demonstrated.

« Software functional testing and system testing must
have a step that demonstrates anticipated realistic,
not artificial, system environments. In this step, the
system must be loaded to the maximum possible
level as constrained by external data services. Also,
potential failure conditions must be exercised in
stressed environments.

e All safety hazard control features and security
control features must be exercised in nominal and
stressed environments to ensure that the controls
they provide remain when the system is
overloaded.

e The test data rates must be increased until the
system is no longer operationally valid.

e Test scenarios that are used in stress testing must
define nominal system conditions. The specifics of
the scenarios must then be varied, increasing in an
orderly manner operator positions, database loads,
external inputs, external outputs, and any other
factors that would affect loading and, indirectly,
response time.

During execution of these tests, the available
bandwidth must be flooded with low-priority
traffic to ascertain if this traffic precludes high-
priority inputs.

Specific tests must exist to assure the capability of a
fully loaded or overloaded system to gracefully
degrade without the failure of some hardware
component. Specific shutdown options of the
system must be explicitly exercised in a stressed
environment to assure their viability.

On certain systems that have potential external
input sources, the ability of an unauthorized user
gaining access in periods of system stress must be
tested. These penetration tests must be consistent
with the security policy of the program.

Satisfaction of predefined quality goals must be the
basis for completion of all test activities, including
individual test step execution, cases described
through a test procedure, test level completion, and
completion and satisfaction of a Test Plan. These
quality goals must include stress and critical factor
components.

All software that impacts safety, or software that is
part of the Trusted Computing Base segment of a
secure application, must be tested to assure that

39

security and hazard controls perform as required.

All testing of critical components must be
executed in nominal and stressed environments
to assure that controls remain in place in periods
of system stress.

Free play testing must only be used when the
design has been verified through Level 2 or 4
testing or when requirements have been
validated through Level 3 or 6 testing. Free play
tests of unstable design or nonvalidated
requirements are not always productive.

Black box tests of requirements (Levels 3,5, 6, 7,
or 8) must be defined, or at least validated, by
someone with operational or domain experience
so that the tests reflect the actual use
requirements of the capability. Traceability
between test cases and requirements must be
maintained.

All test procedures and cases must be defined to
identify what the software does, what it doesn't
do, and what it can't do.

All critical tests, especially those that relate to
critical operational safety or security
requirements, must be executed at 50 percent of
the rated system capacity, 100 percent of the

rated capacity, and 150 percent of the rated
capacity.

Documentation of failures must include sufficient
information to evaluate and correct the problem.
Knowledge of the stress load the system was
under can be used to identify points at which
operational risk is excessive due to system
loading.

41

RULE 9: A Robust Testing Program Reduces
Program Acquisition Risks.

e System acquisition is becoming increasingly more
complex. More comprehensive testing strategies
that can identify defects earlier in the
development process are required.

ACTIVITIES THAT CAN SIGNIFICANTLY REDUCE PROGRAM
Risks WHEN PROPERLY TIED TO THE TEST PLAN:

e Ensure that the Program Plan addresses the
testing strategy for the entire acquisition life
cycle. It must consider schedule, cost, and
performance objectives.

e Ensure that requirements traceability and the test
strategy builds confidence in the program
development process during each phase.

e Develop an exhaustive Test Plan that retains
requirements traceability from requirements
documentation through product delivery. The
Test Plan should define a testing strategy from
cradle to grave while bolstering credibility to
program performance capabilities. This Plan is an
essential element of any software development
project.

e Establish a Configuration Management Plan. The
CM Plan is key to a successful testing strategy.

It helps to ensure that all requirements are
incorporated, tracked, tested, and verified at each
development stage.

Establish a Quality Assurance Program. The QA
Program verifies that requirements and
configuration management processes support
testing plan objectives, and that system
architecture and engineering requirements are
being achieved.

Ensure visibility and monitoring of these
independent but highly integrated activities to
judiciously reduce programmatic risks.

IssUES AND CONCERNS THAT MusT BE RAISED BY PROGRAM
MANAGERS, Risk OFFICERS, AND TEST PERSONNEL:

Has a CM Program been established to track
documentation and data that is shared across the
multilevel organization?

Have requirements documents been incorporated
into the CM Program?

Has a requirements traceability matrix been
developed?

Has a testing strategy been developed that
defines test processes from program conception
to system delivery?

43

RULE 10

Does the testing strategy incorporate the use of
commercial best practices into the Test Plan?

Does the Test Plan define quality gates for each
development step that requires either formal or
informal testing?

Does the Test Plan identify testability criteria for
each requirement?

Are processes in place to monitor and control
requirements changes and incorporation of those
changes into the Test Plan?

Are all activities integrated throughout the
development process to facilitate continuous
feedback of testing results and consideration of
those results in determining program status?

How does the consumption of program reserves
during testing factor into program schedule and
cost updates? How is the consumption of
program reserves during testing recognized?

Has Quality Assurance verified that all
development processes and procedures comply
with required activities?

RULE 10: All New Releases Used in a Test
Configuration Must Be Regression-Tested Prior
to Use.

Regression testing is the revalidation of
previously proven capabilities to assure their
continued integrity when other components
have been modified.

When a group of tests is run, records must be
kept to show which software has been executed.
These records provide the basis for scheduling
regression tests to revalidate capabilities prior to
continuing new testing.

Every failure in a regression test must be
addressed and resolved prior to the execution of
the new test period.

Regression test environments must duplicate to
the maximum extent possible the environment
used during the original test execution period.

Regression tests must be a mix of white box and
black box tests to verify known design areas as
well as to validate proven capability.

All regression tests must use components that are
controlled by configuration management.

45

RULE 10

(cont.)

Regression testing must be a normal part of all
testing activities. It must be scheduled, planned,
budgeted for, and generally supported by the
testing organization. “Let’s just run it to see if it
works” is not a valid regression-testing strategy.

SUMMARY

Testing is no longer considered a stand-alone and end-
of-the-process evolution to be completed simply as an
acquisition milestone. Rather, it has become a highly
integral process that complements and supports other
program activities while offering a means to
significantly reduce programmatic risks. Early defect
identification is possible through comprehensive
testing and monitoring. Effective solutions and
mitigation strategies emerge from proactive program
management practices once risks have been identified.

Successful programs have demonstrated that integrated
testing activities are key to program success with
minimal associated risks.

47

A

Acquisition 42

B

Black box test 4-7,8,10-11, 15, 22, 36, 40, 45

C

Configuration management . 5,7, 14, 15, 16, 23, 24-26,
30, 33, 35, 37,4243, 45

Critical test 40

D

Debugging.c i 4,21

Developmenttest 35

|

Inspection. 810,35

P

ProgramPlan 17,18,42

Q

Quality Assurance 43-44

R

Regression testing 31,4546
Rework 9,21
Risk 12-13,42,43
Risk management 1213
S

Software Design Document. 8-10
Software Design File. 8-10
Software DevelopmentPlan............... 17,18
Software Requirements Specification 8-10
Software Test Case Definition.............. 18,19
Software Test Case Implementation 18,19
Software Test Description. 18,19
Software Test Procedure. 18,19
Software Test Scenario 18, 19, 38
Software Version Description. 26,29
Stresstesting. 38-41
System Engineering Management Plan 17,18
System Segment Specification 89,11
System Subsystem Design Document 8-10

49

INDEX
(cont.)

T
Test and Evaluation Management Plan

Test build

Test environment

Test organization

Test Plan 16,17,18, 19, 29, 33, 35, 39,42, 44
Test planning 14,16-21, 37
Test planning tree

Test support functions

Test tools

Testing definition

Testing levels

Testing process

W
White box test

Victor Basili
Grady Booch
Norm Brown
Peter Chen
Christine Davis
Tom DeMarco
Mike Dyer

Mike Evans

Bill Hetzel
Capers Jones
Tim Lister

John Manzo
Lou Mazzucchelli
Tom McCabe
Frank McGrath
Roger Pressman
Larry Putnam
Howard Rubin
Ed Yourdon

University of Maryland

Rational

Software Program Managers Network
Chen & Associates, Inc.

Texas Instruments

The Atlantic Systems Guild

Lockheed Martin Corporation
Integrated Computer Engineering, Inc.
Qware

Software Productivity Research, Inc.
The Atlantic Systems Guild

3Com

Gerard Klauer Mattison & Co., Inc.
McCabe & Associates

Software Focus, Inc.

R.S. Pressman & Associates, Inc.
Quantitative Software Management
Hunter College, CUNY

American Programmer

