
A Proposal for a Recursive Object Oriented Life-Cycle

Kevin E. Carlin EVB Software Engineering, Inc.
Dino R. Russo TRIGON Software Engineering

Brad Balfour EVB Software Engineering, Inc.

ABSTRACT

This paper describes the recursive object oriented life-cycle which
has been developed in conjunction with the authors’ Object Griented
Development (OOD) methods. The basic goals that a life-cycle must
satisfyaredescribedandtherecursivelifecy aremapped
backtothem.Adescriptionofhowthislife-cyclemaybeimplemented
within the framework of existing standards such as DGD-STD-
2167A is also included. This paper also summarizes the authors’
experience withusing this life-cycle (or elements thereof) onvarious
projects over the last six years. Approaches to meeting the issues of
formalprojectmanagementwithintherecursiveframeworkwillalso
be discussed.

INTRODUCTION

Experience with the use of GOD in Ada has resulted in a serious re-
examination by the authors of how software project management
must be performed to realize the full benefits of the approach. So far,
the industry’s focus has been on adapting preexisting methods and
technology to take advantage of objects and the application of
existing technologies in “object oriented” methodologies. These
practices, suchas the Waterfalllife-cycle, whichhavebeeneffectively
in place since 1970 [Agresti, 1986a], arose naturally from function-
oriented methods and are firmly rooted in the conditions of that time
- relatively small-scale pr6jects developed with scarce computer
resources. The use of an object oriented approach negates the
ccmiitions which call for a waterfall approach to software develop-
ment. For the last six years, a coherent, organic approsch to object
oriented project management employing the Recursive life-cycle has
been emerging within the community, This life-cyclepennits project
management based on significant project tasks rather than software
life-cycle phase.

We believe that 1) in the long term, the industry must move f&n a
documentdrivendevelopmentprocesstoaprocesswhichemphasizes
intermediate delivery and acceptance of sofiware product by the
customer; and that 2) during the transition, new approaches which
facilitate intermediate evaluation and delivery will be required to
provide extensive intermediate products analogous in content to the
current documentation requirements associated with standards such
as DOD-STD-2167A [DOD-STD-2167A, 19881. Please note that
we .SE not dkloun~ing the proper and necessary development of
requirement specifications, as-built design specifications, user’s
guides.etc.,butratherthelongchainofcostly,disposablei
documentation produced to demonstrate the contractor’s frugal
adherence to good software engineering practice. We will discuss
how such products fit within the lifecycle in a later section.

Permiuion to copy without fee alI or part of this material
ia granted provided that the copia an not made or diatributsd
for direct oammar&l advantage, the ACM copyright notice and
the title of tbe publication md its data appear, md notice ia
given that copying is by pmmi4on of the Association far Corn-
puting Machinery. To copy otherwise, or to republish, requirea
. fee and/or ape&c parmiuion.

RECURSION AND 2167A
The 2167A software development standard is often considered an
obstacle to innovations such as the Recursive life-cycle due to
perceived implicit preference for the Waterfall life-cycle. The
following clarification of 2167A corn the Joint Logistics Command
[JLC, 891 responded to government and contractor concerns that
2167A intended to restrict developers to the Waterfall life-cycle.

“[2167A] specifies a set of activities that must take place
duringasoftwaredevelopmentproject,butdoesnotimpose
any requirements that these activities be performed se-
quentially or that one activity can begin before another is
complete. To emphasize this approach, the standard states
that the activities specified in the standardmay overlap and
may be applied iteratively or recursively.” [Emphasis
add=u

OBJECTIVES OF SOFTWARE PROJECT
MANAGEMENT

“GOLDEN THREADS”
In the development of DoD software development standards, a
general criteria arose by which to judge the quality of the result.
These are referred to as the “Golden Threads” of software project
management [Ma&or, 19891. Thesethreadsrepresent thecustomer’s
ability to monitor software projects and the customer’s right to
receiveaqualityproductat afairprice. Ironically, theverymeasures
intended to protect the customer’s rights as represented by these
threads serve to distract contracting engineers and the customer from
the actual product with a parade of costly, disposable intermediate
products.

PROJECT CONTROL POINTS
In general, control points are discrete points in a software develop-
mentproject when customers exercise theirrights. Typically control
points are defined in terms of reviews and review products1 which
arescrutinizedbytheclienttodetennineiftheprojectgoalsaTebeing
met. Under current practice, not only are documents reviewed, in
many cases they become controlled property of the client.

DOCUMENTATION
For the customer, documentation is the tangible element in the
software development life-cycle. In many cases, Ihe customer’s
specifkations for documentation are more well defined than their
software requirements. One purpose of documentation is to serve as
an anchor for project control points. Another purpose of documen-
tation is to satisfy the need of the customer to have enforceable
agreements with the developer which are more well defined than the
procurement contract. Lastly, documentationmustserve thepractical
purpose of enabling the client to use and maintain the software after
deployment.

CHANGE MANAGEMENT
Recognizing the fact that change is inevitable. customers demand
that change be controlled. One purpose of this control is to avoid
deviating from the development path. Changes are “red flags”
alerting the customer to pay attention. Another purpose, although

@1990 ACM 0-89?91-409-O/90/1200-156 $1.50

156

somewhat surreptitious, is self-protective: changes serve as the
excuses for cost and schedule overruns.

ACCEPTANCE CRJTERIA
Although one could argue that this area of concern is merely a sub-
issue of control points and documentation it garners enough atten-
tion to examine it as a separate point. For the customer, a software
development life-cycle must provide a time and method for the
specification of criteria that determines the acceptability of the
products developed. The current state of the practice is that these
criteria are specified as early in the life-cycle as possible. As amatter
of fact, the first acceptance criteria examined are generally in the
reahnofdocumentation(e.g.specificationoftheformatofdeliverables
in the proposal or the Software Development Plan). The purpose of
thisrequirementistoprovi&customerswiththesecurityofknowing
that the software and its associated products will meet their needs.

RECURSIVE PROCESSES

The recursive life-cycle comprises a series of steps repeated during
the development process. Although the detailed steps will be deter-
mined by the process, it is assumed that the process will incorporate
these basic activities: analysis, producing a softwsrearequirements
spedication; design, producing a software architecture; imple-
mentation, expressing the design in computable form; and test,
showing that the computable form does ll~t meet its specification.

In most modern lie-cycles, iteration among the process steps is
allowed and encouraged. However, each of the phases is traditionally
“completed” before the next is started. ‘Complea# means that the
activity has achieved a level of maturity which permits phase
products to be baselined, reviewed, and approved, and after which
changes are much more stringently managed. Iteration is the return
to a previous development process task to add new information or
correct errors, propagate changes, and then return to the point in the
development process from which the iteration was initiated

figure I : Process Sequence with Iterating Feedback.

The recursive approach applies the concept of recursion to the
software development process, which is to say that, in the course of
completing some specific development task lower levels of ab-
straction will be identified and the full process will be prrformed
again at that lower level. On completion of such lower levels, the
current level may be completed. This is analogous to the concept of
a recursive subprogram with the addition that multiple recursions
may take place concurrently.

figure 2: Recursive Process with Iteration within the Process

A recursive software lifecycle employs many applications of the
paradigm:

Analyze a little. Design a little, Implement a little, Test a Ii&

In a recursive approach, the development team will apply the

developmentmethods to a single level of abstraction. Some elements
of the level of abstraction will be trivial, and csn be implemented
directly. Other elements willbenon-trivial and need further analysis
and design before they may be implemented, In this case, the entire
development process is repeated recursively, on the newly discov-
ered problem. This new branch of the problem may proceed in
parallel with the implementation and test of the original, with a
limited number of well-defined synchronization points.

figure 3: The Recursive Life-Cycle

APPLICABILITY TO OBJECT ORIENTED APPROACHES
What makes the recursive life-cycle possible in software develop-
ment is the essential character of objects as architectural building
blocks. It has long beenknown that objects as architectural units are
highly discrete, robust, autonomous entities (e.g., [Cox, 19861).
Interobject dependencies are generally limited to the parents (in-
heritance) and thecomponents (heterogeneous aggregatesor “record
types”) of the objects and involve knowledge only of the external
interface the object presents to the world. The dependent module has
nodirectaccesstoorlcnowledgeofthemethods,variables.orintemal
stmcture of its closed-abstraction helpers.

ESSENTIAL DEFINITIONS

There are essentially four kinds of objects: classes, instances, values,
and subsystems. Classes describe the properties of a set of objects,
in the same way the concept “integer” is applied to variables of that
type. A class may have its own state information and operations,
usually for management of the storage or concurrency behavior of its
objects. Inrtances of a class are analogous to the variables of a type.
While identical in form, each instance has its own, discrete state just
as each integer variable has its own value. Values are instances with
an immutable state, which are named for their signil%ance (e.g.,
Null, Closed Empty). Subsystem are encapsulated aggregates of
objects combined to perform useful work A subset of component
objects is presented in the subsystem interfsce for parameterization

157

purposes, while the balance of objects and the details of the process
in which the objects are employed is hidden. The significant identity
of a subsystem comes from the objects collected to do work, not from
any specific role the subsystem (i.e., that combination of objects)
might play at a specific point in an analysis or design. Unlike other
forms of subsystem employed in the industry (e.g., pooch, 19901,
page 177-178), this definition 1) improves conceptual uniformity
between objects and subsystems, encouraging architectural consis-
tency, and 2) does notrequire extra-lingual support for implementa-
tion Although a subsystem encapsulates the objects it uses f?om the
perspective of the subsystem’s client objects, there is no exclusivity
implied in therelationship. Components of a subsystem are available
to any other potential dependents in the software system as appro-
priate. Operations are the functional elements of an object, used to
effect state changes and consequently, performuseful work. Access
to all objects is governed strictly by the object’s interface, including
usage potocols. which assures that usage is consistent with the
object’s abstraction.

SOFTWARE DEVELOPMENT STRATEGY

In the recursive life-cycle, the familiar life-cycle phases do not
disappear, but instead shrink in size and multiply drastically in
number, occurring on a per-level-of-abstraction basis. In arecursive
development approach there is no reason&e basis for saying that
the project, as a whole, is in some spe+ development phase. In-
stead, meaningful intermediate goals should be selected and, when
appropriate, incremental capabilities resulting from those goals
should be delivered to the customer throughout the development
effort, for evaluation or actual use by the customer. Phases become
a measure of work counted in man-days rather than man-years,
applied to small, manageable groups of objects over a short period of
time. (The Recursive life-cycle is illustrated on the next page.)

Thanks to the flexibility of recursion, it is entirely possible to emulate
other approaches such as the Waterfall or Spiral [Boehm, 19861 life-
cycles, but this is not suggested or encouraged. All of the strategy
elements that we describe have either been employed in a contracted
project or been formulated to &tress the issues raised in the course
of those projects.

BRANCH MANAGEMENT
We refer to a given recursion level and its subordinate recursion
levels, if any, as a branch (see figure 3). The key to managing the
recursive l&cycle lies in the selection of which branches to priori-
tize forrapid development, and which to deferforlaterdevelopment.
Branches predicted to be large, abnormally complex, or high-risk
(for reasons such as incomplete system interface documentation)
require special management. Branches associated with undefined
application interfaces can be deferred until only those objects di-
rectly impacted by the interface remain to be developed. Note that,
eveslemployingrecursion.notallinterfacescanbe&fenedcavalierly.
The choice of a particular data base system, graphical user interface,
or real-tune environment may have so pervasive an effect on a given
application that very little profitable development may precede such
decisions, even employing OOD and recursion.

RAPID DEVELOPMENT
The rapid development of branches is similar in many ways to a
conventional prototype (e.g., [Boar, 19841). except that the standard
recursion products are produced and reviewed, and deliverable
software components are tested and placed under configuration
control. Components which are common among several branches
an available from the effort of the earheat branches developed. This
is not to say that rapid prototyping should not be employed under
recursion. Rapid development of selected branches provides both a
possible alternative to rapid prototyping and a natural approach for
u~grdng a successful prototype. Rapid prototyping may still be

preferred in cases where there is a reasonable probability of proto-
type faihue and the objects developed in the effort will not be of any
other use to the overall project.

BOTTOM-UP DEVELOPMENT
Object oriented design is often suggested as a bottom-up comple-
ment to other design approaches (e.g., [Cameron, 1989, pp.293-
304]). The suitability for bottom-updevelopmentdoesnot disappear
in a native object oriented development approach, and is supported
by the recursive lifecycle. Not only canpre-existing ““nodes.” in the
form of levels of abstraction be grafted to appropriate points of the
tree,butleveLsnlayevenbe&veloped~rtotopdownconfirmatian
of a need for the level. For example, a boundary object may be
developed which, in a purely topdown effort, would not be reached
until late in the project. In another case, early in a database-oriented
project it may be obvious to developers that they want to follow a
standard approach to the use of database/procedural language bind-
ing to avoidside-effects andpromoteuniformity. Utilities to support
the approach cau be rapidly developed in “isolation*’ from other
software elements, and usually should be to assure that such utilities
are sufficiently stable and mature when they are later mquired to
supportthe&velopmentandtestingofthemanydependentelements
of the software.

BRANCH MERGES
When a single level of abstraction is employed at multiple points in
thetree, amergeofbranchesoccurs. Suchmergesareconsistent with
the tree structure employed, which is in the form of a directed acyclic
graph rather than the traditional hierarchy, and desirable, since they
represent high-level reuse. From this it follows that, where two or
mom simple levels of abstraction possess considerable overlap,
strategiesshouldbeconsideredforconsolidati.ng thetwoandthereby
eliminating redundant design material. Merge points have a special
significanceinschedulmgaswell. Forthepessimist,themergepoint
stands as an obstacle to the completion of multiple branches, espe-
cially in the case of a poorly-considered consolidation. Clearly, the
importanw of meeting schedule is greater for a node in the critical
path of multiple branches and attention should be paid accor&mgly.
For the optimist, the merge point is an opportunity to make progress
on several branches very quickly.

DOMAIN ANALYSIS
Central to the management of any object oriented development
project is the use of domain analysts to avoid redundan t development
effort, organize object libraries. specify standards to promote port-
ability and polymorphism, and provide consultation in such matters
to engineers and technical management. In contrast to project
architects, whose job traditionally has been to develop a high-level
software architecture for large projects to guide topdown develop
ment and determine the interfaces of major project subsystems,
domain analysts are interested in those objects and operations which
are common to a particular application domains. They are also
concemed with the availability of compatible software elements
from sources inside or outside of the developing organization. The
domain analyst develops and maintains object taxonomies and
consults at all stages of development to promote the most effective
use of pm-existing elements as well as elements which may already
be under development within the project or organization.

In a large development effort involving dozens of recursive branches
sinmltaneously, the domain analyst’s efforts become vital to reduc-
ing redundant effort and providing early identification of branch
merge points and object reuse issues which only a wide perspective
may provide. The domain analyst is concerned with the products of
all phases, not just executable code, and not just products targeting
a single implementation language. Specifications and designs for
similar applications are bound to exist, and should be employed at
least as a starting point where feasible.

158

Analvze
Design
Implement

Test

I Analvze

Analyze
) Design

q Test

figure 4: Anatomy of a Recursive Development

159

The domain analyst serves ss i3n important counterweight to the
project fuchitecL The architect is concerned with framing a solution
to the specific problem at hand, while the domain analyst is con-
cernedwithhow similarproblemshavebeenandwillbesolved. The
architect is concerned with object sufficiency with regards to the
application, the domain analyst withobjectcompletion as regards the
abstraction’s broadest potential domain.

The discipline of domain analysis is still very young, and requires
cross-disciplinary skills into areas such as object classification and
knowledge representation, as well ss a broad and deep knowledge of
the computing field. Practitioners should be innovative and have an
eye to industry literature on the topic for support and new ideas.
Finally, domain analysis requires the development snd implementa-
tionofappmpriateschemaforthedatabasetheanslystmustdevelop,
both for personal use and for browsing by development engineers.
The more efficient the dissemination of domain analysis data via
electronic means, the greater the return on the domain anslyst’s
efforts and the general reuse effort, and the more efficient the
cooperation between recursive branches.

PRODUCT INTEGRATlON
The managrment and control of product integration is simplified
tremendously by this approach. Since each object in the system is a
complete, discrete system in its own righL the implementation and
test of each coMponent in the application becomes both unit test and
system integration for that component. Testing of the level of
abstraction is performed to demonstrate that the objects in question
do not perform effectively in combination to meet the specifications
for the level @alfour, 19881. The act of integration is implicit in the
completion of each recursive level, up to and in&ding the top-level
system object.

Objects on the application boundary become a special case of
integration when the corresponding external object is not available
during the development or testing of a level of abstraction In such
cases, it is generally useful to develop a simulator object which, as a
minimum, behaves appropriately for the necessary test cases pend-
ing replacement by the actual interface object (and related external
facilities).

RISK MANAGEMENT
Riskmanagenrentis anecessarypartof any developmentprocess. In
general, risk xeas are concerned with metis of the project that arenot
well dehned, are subject to critical constraints, or are technological
problems which have not been solved. The recursive life-cycle
approach recognizes that risk areas are an integral part of develop-
ment and therefore provides anumber of options for its management.

Areas that sre involved with unknowns are not unusual in current
development scenarios. In large-scale applications, concurrent de-
velopnrentofhardware andsofhvaremay cause interfaceproblems.
In the recursive approach, development of the system proceeds until
that interface is reached. Since the interface is somewhat nebulous,
a virtual interface may be substituted which provides the logical
abstraction of the entity being interfaced to. The impleMentation of
that object, which depends upon the actual interface, can be post-
poned until later.

Critical constraints and technological unknowns present similar risk
problems. problems which, if unsolved may mean project failure. In
ordertoreducerisk, the sreas of concern (branches) shouldhave their
development accelerated. Only when these areas are successfully
completed should development continue. By focusing on the criticd

problem. cost and time risks can be reduced to an acceptable level.
In otha words. the amount of time andmoney at risk is reduced to a
Specific level rather than the project level.

COSTING AND STATUSING
Centrsltothepracticeofengineeringistheestimationofjobcostand
the development of cost models to aid in project estimation and
evaluation (e.g., COCOMO in [Boehrn. 19811). Such Models are
developed based on extensive databases containing information for
dozens of projects on at least fifteen parameters. Such information
is not collected snd in place at this time for recursive approaches.
While conventional models have not accurately predicted recursive
efforts in the few cases available, these cases have done consistently
betterthsnthemodelspredict.It isnotclearat allthatthe sssigmnent
of a set skew factor to any conventional Model will produce consis-
tently good estimates. While experience is not yet sufficient to
propose a specific modeh or even suggest a conclusive set of model
parameters, some general observations can be made at this time.
Assuming constraints similar to mission critical software develop-
ment, a level of abstraction (usually representing 400-200 SW)
will usually take two to eight man-weeks. with complexity having a
more sign&ant impact on the schedule than simple SLOC count.
SLBC estimation for abranch is usually done by “rOughing out” the
branch, forecasting a reasonable set of levels, assigning SLOC
estimates to each one, then summing the SLOC estimates. Clearly,
this requires some experience with the method and is highly subjec-
tive, but experience and judgment are always prerequisites to good
estimation. Results to date have tended to be on the high side
compared with delivered SLOC, though usually within 25%. For
statusing. the SLOC projections are adjusted to fit the actual xchi-
tecture of the branch as it emerges. When a node is completed, its
actual SLOC count is added to the completed column and its latest
estimated SLOC count is deducted from the to-be-developed col-
umn.

CUSTOMER SUPPORT
The following products and activities are normally used to provide
the customer with a window into the project and should be tailored
to meet the customers needs and interests. In an informal or non-
contract development setting, these activities take very different
forros. market canvasing and analysis, product testing. etc. That set
of concerns and problems as it relates to recursive development
projects is currently outside of our range of experience, so we will
cling to the familiar ground of formal contracting in describing the
custoMerdeveloper relationship.

REVIEWS
The primary mechanism for customer in-process oversight under
recursion is theIDR5 which is in many ways more similar to the DoD
project managemenl reviews in agenda and approach than the stan-
dxd IhD technical reviews. The IDRs review project progress from
the technical (rather than management) perspective. The incremen-
tal products delivered for the period in question are presented and
commented on, customers and their te&nical representatives get
direct access to project technical management, prototypes xe dem-
onstrated etc.

IDRs xe a natural consequence of the development method in that
the product is developed through successive refinement of branches.
Multiple branches are typically being developed concurrently and
are at various stages of completion. Rather thsn waiting until all
branches are at the same level of completion, IDRs allow formviews
to take place at a point in the development process when the review
is meaningfol. Typically each IDR is scheduled to coincide with a
milestone that is important to the development (e.g., risk areas).
Additionally, the products and scope of the next review csn be
dete&ned at the current IDR.

ThebenefitsofIDR,ssopposedtomoreformalreviews,xeobviotts.
First. beuuase of the in-progress nature of reviews, there are few
mpises either for the customer or developer. In other words, the
potential for misunderstanding and subsequent loss of a significant

160

amount of time, effort, and dollars are reduced Secondly, since the
deliverable products are typically part of the review, the problem of
product acceptance is virtually negated. Another significant benefit
of the IDR is that it allows for delivery of products that are complete
even though the project, as a whole, is not complete (e.g. a usable
subsystem could be accepted prior to the acceptance of the complete
system).

There is some cost incurred by the IDR concept. Multiple reviews
require increased document poduction. Generally, the document
production cycle is much less rigorous than might be the norm since
the reviews are of software development documents produced by the
method IDRs which present deliverable documents (e.g. CDRLs)
may be more fotrnal. Additionally. a consequence of IDRs is that
change control procedures must be adapted to the process. Experi-
ence to date has shown that the benefits of the IDR scheme of reviews
far outweigh the cost incurred.

Because customers sometimes cling to 2167ishreviews. an alterna-
tiveapproachtotheIDRprocesscanbeuseful.Inardertosatisfythis
requirement, certain IDRs t&e on a special status wherein the
products presented are specified both in form and level of detail
required. The necessity for this review %rutch” can be removed once
the client has experienced the process.

MILESTONES
The strategies for selecting project milestones vary greatly depend-
ingonprojectconditions,developerstyle,andcustomerp,
Perhaps the only strategy which should be ruled out u priori is a
waterfall approach, which would hamstring the software engineers
and severely limit management options for mitigating project risk

In the recursive development approach, there are typically more
milestones identified than in a non-recursive approach. These mile-
stones are usually for smsller products and not based on project
phases as much as they are based upon risk and resource manage-
ment. Each milestone is generally associated with one or more
branches with many independent milestones being tracked concur-
rently. New milestones are specified as older milestones near
completion.

In aprojectwherechangesoccur(abnostallprojects),milestones and
schedules may be devastated by unexpected events. In the recursive
life-cycle, since milestones are short-term, the impact of change is
generally small and isolated. Additionally, since milestones are
generally reviewed and/or negotiated at IDRs, the client is always
aware of change impact

There is an increase in overhead inmanaging a project in this fashion
- there sre more pieces to track. Experience, however, has shown that
since the pieces being managed are smaller, lower level managers
(development leads, etc.) usually have little problem managing
individual branches.

DOCUMENTATION
The standard products to support an IDR are user’s documentation
(user’s guides, operator’s guides, on-line help, etc.), developer’s/
maintainer’s documentation (an incrementally delivered product
specification, incorporating object specifications, application maps,
traceability information, etc.), and any separate interface specifica-
tiOnS.

The primary development document for the recursive approach is a
SOftWW product specification (SPS). The SPS is a complete docu-
mm encompassing requirements specifications for objects, the
design corresponding to the object specifications, the implementa-
tion of the objects’ design, and lastly teat products for the objects.
This document is the primary review tool during IDR - showing the

progression of the product throughout its development history. A
particularly beneficial aspect of an SPS of this form is its ability to
incorporate muse products without any special handling. Each pre-
existingobjectincorporatedinto theproductunderdevelopment will
consist of the same basic components -requirements specifications,
design, etc. For all practical purpose, there should be no difference
in the form of documentation for a relatively simple object and a
complex system. Each requires the same sort of information for
completeness. The major distinguishing factor is the level of abstrac-
tion being considered. The ability to incorporate reusable objects in
this fashion is a concept not supported by traditional phase-oriented
documentation requiring separate documents for analysis, design
andsoforth.

User’s documentation is the least affected by these concepts except
that most are currently written from a functional perspective having
a more direct mapping to the functionally oriented development
products. An altemative approach to user documentation is to follow
what is becoming a popular paradigm in the commercial software
productsector.Mostmodemusermanualsnowcentertheirattention
not on the operational chsracteristics of the software in the
production of products, but focus on one entity at a time. Understand-
ably, tbere is a high level view of the system operations, but
sign&ant attentionis focusedupontheo~~ecr~, their operations, and
their characteristics.

“UP FRONT” ANALYSIS
In recognition of the fact thatmost clients are unaccustomed to some
of the ideas presented, resistance is expected. Perhaps the largest
resistance area is the area of requirements. As mentioned earlier,
customers (and often developers) am uncomfortable unless there are
a set of requirements which attempt to specify the nature of the
system to be developed to an excruciating level of detail. To the
client, this requirement set is a protection mechanism designed to
guarantee that the product that they receive is the product that they
want. To the developer, the requirements specification also acts as a
shield. The specification defiies the criteria by which the product is
judged. In the case of both parties, the bsselined specifications serve
as a safety valve for cost and schedule overruns - changes from this
specifiiation are inevitable.

In order to satisfy these needs for sn up front analysis, the life-cycle
is adjusted slightly. An object oriented boundary model is con-
structed. The boundary model is documented in sn GORSs and is
usually delivered between l/4 and l/3 of the way through the
project’s calendar schedule. Parallel activities such as analysis,
design, or implementation of lower level abstractions are delayed
until the boundaty model and its specifications are complete. From
the developer’s point ofview. this essentially means that useful work
that could be accomplished is pit on hold. To the client, the impact
of this delay is cost (time and money). Of course both parties suffer
from increased risk due to the nature of up front analysis. The
complexity of the task and its products are much greater and subject
to errots and omissions. Also, since these up front specifications are
locked in, the impact of change is increased.

Up front analysis usually means the delivery of a software require-
ments specification as a separate product prior to beginning further
development.Fromthispoint, adevelopmentdocumentisprodu~.
In order to maintain some level of continuity and traceability be-
tween these documents, the additional overhead of traceability maps
or other information is incurred. Experienced developers and cus-
tomers will generally concur that transition aress are subject to
errors. The separation of requirements specification from other
development products only serves to propagate the notion of distinct
phases in the software life-cycle and provides little tangible benefit
to either the developer or client.

161

It is often necessary in formal software development to specify a
contractually meaningful statement of requirements to be met by the
software product. This statement of requirements can be crucial to
protecting both parties and stabilizing requirements in a large effort.
In a functional approach functional models of the application are
developed and requirements are allocated to functional elements in
the model. In performing an object oriented requirements analysis,
an object oriented model is constructed. We find that an object
oriented application boundary model is well suited for this purpose.

OBJECT ORIENTED BOUNDARY MODELS
A boumiary model specifies the sum of system interfaces to the level
of detail required for understanding and agreement between the
developer and the customer. All such interface points are reducible
to objects which may then be specified. These objects are referred to
as boundary objects As boundary objecta are identified and speci-
fied, we must also represent how they will behave in combination to
achievehigherlevelsystemprocessinggoals. andforthispurposewe
add subsystems to the boundary model (though these subsystems are
not considered to be boundary objects themselves). The resulting
model specifies all critical aspects of the system in a form which will
permit meaningful traceability between application specification
andapplicationdesign. Whiletheappmpriatedecisionsarelefttothe
application designers, thanks to the nature of object oriented devel-
opment, which arises from simulation development, the boundary
objects offer a near one to one mapping to design objects and their
target language implementations. The model’s supporting sub-
systems will not share this advantage to the same degree. design
detailsandefficiencyconsiderations conspiretothecontraty,butthe
tracingwillstillbefarsimplerthanbetweenorthogonalmodels(e.g.,
fUnctiOnal analysis to object oriented design) Since it Will be con-
ductedbetweenlikeproducts. Whileitispossiblefromtheboundary
model to demonstrate by analysis the sufficiency of producer (input)
objects to satisfy consumer (output) objects, this exercise generally
has a poor cost/benefit ratio when conducted without the assistance
of automated tools, and should only be performed for elementa of the
model that will be truly immutable later.

TRACEABILITY
The tracing of requirements to their fulfillmenL from analysis to
design to implementation to test, is a natural consequence of an up-
hnt analysis approach. Whenever analysis products are segregated
6rom the corresponding products of later phases, some tracing
becomes necessary to demonstrate closure in the later phases. In the
boundary model we have essentially two seta of requirementa, those
associated with boundary objects and those associated with the
subsystems completing the model. Since the problem space bound-
ary objects will map to solution space objects in the application
design, these requirements will be directly and obviously mapped to
their s0lution space counterparts, and therefore directly to solution
objects. The remainder will trace to the primary design elements, i.e.,
levels of abstraction, and by derivation to specific objects.

In the case where an up-front analysis has not been under&en, it is
not necessary to organize a formal boundary model. Boundary
objects are identified and initial specifications are developed. These
~pecifkations are then employed sndrefi’ied by levels of abstraction
as needed in the course of recursive &velopment.

In time, we expect the current traceability approaches employed ;n
large scale contracts to be superseded by formal specificationmeth-
odswhmhigh-reliabilityisdemandedandbythseaseofmodifiability
inanobjeetorientedapproachwhenpmofs ofreliabilityarenotcst-
effective concems (i.e., when the cost of change is reduced an order
of magnitude by the combination of greater ease of change and
automation and streamlining of change control bureaucracies).

ADDITIONAL PROJECT MANAGEMENT ISSUES

The following issues may be of little interest to informal develop-
ment projects. but are central to efficiently executing a recursive
approach under 2167A or similar standards.

CONflGUFlAllON MANAGEMENT
Configuration management is significantly impacted by the Recur-
sive life-cycle. With the high number of document submittals,
change control mechanisms for the in-process produc:t specification
must be geared to the concepts of change capture and engineer
accolrntabilityrarherthanbureaucraticconfigurationc~~~boards
(which obviously still have a place in the control of formally
delivered application branches).

ConRguration management is concerned with the identification and
control of “con@uration items.” Historically, when applied to
softwareunderDoDstaudarda,suchitemshavebeendesignandcode
modules, i.e., abstract and implemented functions. These units are
identi&d, assignednumbers, and organized into baselines.

The configuration management discipline arose when a missile
program suffered a peculiar setback. In the push to meet project
deadhm3 engineers tried several different prototype modifications
in rapid &cession. The test in question was, of course, destructive.
When one of the prototypes tested successfully, however, engineers
were unable to idea&y the combination of modifications which had
resulted in the successful prototype. Cor&urationmanagement was
introduced to assure that successfully tested systems could be re-
produced

Configuration items are not rigidly deEned in the standards, but their
treatment is. The top level software conQuration item defined by
2167A is the CSCP, which usually translates to sn executable pro-
gram, a major subsystem, or a library of common utility routines.
Traditional standards such as 2167A depict configurations as hiersr-
chical trees through which requirements are functionally decom-
posediiomtheCSC!I,throughoneormoreCSCss, to the lowestlevel
requirements elements, CSUsa. Since software architectures del-
egate the satisfaction of requirements by dependency between archi-
~turallmits,andsincedependenciesinanobjectorientedarchitechlre
are organized as acyclic direeted graphs, we recommend that con-
figuration management and the traceability model be adjusted ac-
cordingly, as shown below.

I csc I
figwe 5: Directed Acyclic Grqvh conjigwation

162

In our approach we associate CSCs with levels of abstraction.
Requirements are associated with levels of abstraction, either from
boundary model subsystems or, in a purely recursive analysis, from
analysis performed within the recursive life-cycle. Childrenof those
levels may derive requirements from the parent and may draw more
requirements from the boundary model (unlike a decompositional
approach where all requirements are levied against the top level and
the remaining levels are decomposed derivations of those reqire-
ments).

We relate CSUs to objects, the significant elements in the imple-
mented code. For example, in Ada we treat the specification library
units [LRM. 1983. section 10.11 as objects, and therefore as CSUs.
Related bodies and separate units make up the CSU’s part list. This
defiition works well both for documentation and testing purposes.
A CSC satisfies its requirements either by delegating them to lower
CSCs or by satisfying them with CSUs. The resulting configuration
maps CSCs to CSUs in a many to many fashion (as shown below),
and is unconcerned with inter-CSU dependencies since they are
subsumed in the CSC-level architecture.

/ / /csc//

figure 6: Relation of CSCs to CSUs

In some cases, the customer may have strong expectations that the
configuration tree will include only code-implemented elements
based on prior experience. This will have the unfortunate effect of
disowning the levels of abstraction from the requirements tracing. It
is the levels of abstraction that determine how CSUs will be com-
bined andemployed to satisfy the level’s requirements, making them
a critical element in the requirements &acing scheme.

NOTES ON IMPLEMENTlNG THE RECURSIVE LIFE-
CYCLE AS A SOFlWARE ENGINEERING PROCESS
Developing a software engineering process is not dissimilar from
software development itself. The process consists of a set of tasks.
Eachtaskhas prerequisites (inputs), aprocess descriptionexplaining
whattheengineeris to accomplish, andproducts (outputs). Whenthe
tasl~ prerequisites are available, the task may be assigned. When the
tasks products have been accepted by the designated authorities, the

task has been completed. The paradigmatic high-level tasks in
software development are analyze, design, implement and test. The
level of process definition required depends on the number of
cooperating engineers, theirskilllevels, the criticality of the software
being developed, the level of rigor demanded by the customer, and
general project constraints (e.g., cost, schedule, development envi-
romnen~ etc.).

The Software Engineering Institute at Carnegie-Mellon in Pittsburgh
has done extensive work on the evaluation of software engineering
organizations focusing on the organization’s own process defiition,
evaluation, and evolution capabilities. The related reports and
studies may provide useful insight to appropriate goals in developing
my new software engineering process, recursive or otherwise, within
an organization.

EXPERIENCE WITH RECURSIVE LIFE-CYCLE
APPROACHES

We provide six cases in which object oriented development within
the recursive life-cycle model was applied to various degrees. These
cases irtcludeprojects using 2167A. A seventhcase describes a DoD
contract requiring, and structured to support, object oriented devel-
opment and the recursive life-cycle.

CASE ONE

BACKGROUND
The customer, a DoD client, did not require normal DOD 2167/
2167A standards, including specified documentation and reviews.
The contract was. to some degree, are-engineering effort in that an
existing system was to be redesigned with significant enhancements.
The only requirements that were formally specified were the en-
hancements.Theserequirements werespecifiedinatwopagememo
and were very abstract.

PROJECT HISTORY
After obtaining training in Ada and Object Oriented Design, the
contractor was convinced that they wanted to employ OOD as the
development method. After an initial effort to apply an object
oriented approach, it was decided to seek an outside consultant to
assist in the transition to the new technology. The project was
approximately six calendar months behind schedule (in an eighteen
month schedule) based on the company’s projections. The code that
hadbeendeveloped was discarded and the project essentially started
fresh.

Without the restrictions of a waterfall life-cycle, the project was able
to concentrate on analysis, design, coding. and testing concutrently.
As simple objects were identified and specified, they were turned
over to programmers for wdiig and testing. At the same time, a
smaller team of analysts refined the abstract requirements, devel-
oped object specifications, and designed the more complex classes.
As classes became lass complex, they were turned over to less
experienceddesigners for completion. Asidebenefit of this situation
was that lass experienced people were able to gain experience and
contribute to the project. The better designers were easily identified
and given more complex classes to design.

There were two particularly high risk areas in the project that were
identified. Thanks to the nature of the life-cycle, it was possible to
accelerate development of these artas. Thus, if the problems proved
insurmountable, the project could be modified or cancelled at an
early point with less financial or operational impact to the client

Thanks to the nature of the product and the development method, we
were able to deliver the product in phases. This enabled FQ’Do to take
place concurrently with development. Requirement changes, iden-

163

tifkd during FQT. were generally accommodated within a matter of
hours (the longest case being two days).

Designing with reuse in mind played a significant role in the success
of this project. Not only were software components mused, but also
complete subsystem designs. At one point, new subsystems were
being developed in two days by reusing the design and existing
components. One measurement showed approximately 80% reuse
achieved based on SLCC count.

OUTCOME
The project was completed approximately two weeksbehind sched-
ule.The~~resul~ofF~~~v~few~,~w~~w~e
addressed in one to two days each Additionally, the slight schedule
overmn was overshadowed by the partial product deliveries which
enabled the customer to affect a smoother transition to the new
SyStt%l.

MANAGER’S PERSPECTIVE
Since the project manager had little training in the method anxiety
was high. The metrics by which the management had previously
measured project milestones showed that the project would be
extremelylate.Themanagrmgltwaslmaocustomedto theunusually
long analysis and design efforts. However, the management trusted
the consultant and anxiety was relieved as partial deliveries were
made. As pro- the amount of time spent in actual coding,
testing. andintegrationwas significantlymduced.

CASE SUMMARY
Despite a six month handicap on a 100.000 SLCC project, the
contractorwasabletomitigatecustomerrisksandcomeinveryclose
toschedule.Thekeystothistumaroundweretheintroducti~ofthe
recursive life-cycle, which made for more efficient use of project
personnel , the reuse of significant amounts of design and code
during development attributable to OOD, and an appropriate divi-
sion of labor among project personnel.

Those people who were not directly involved in the project and had
no ODD/Ada experience were quite certain that the project was
going tobe adisaster.Theirpersonalmetrics showedthattheproject
would be unacceptably late, if delivered at all. Even the engineers
directly involved had their doubts. It wasn’t until the pieces started
to come together into a cohesive whole that these engineers became
ConViIld.

CASE TWO

BACKGROUND
The customer, a DOD organization, did specify the conventional
DOD-STD-2167A standard, complete with a waterfall-based set of
project deliverables. The contract specified the re-engmeering of
seVemlapplicati0ns. Somelceytecbnicalstaffmemberswerecogni-
zant of OOD, but had little experience applying it to a 2167A effort.
Support for an object oriented approach was strong but mixed in the
customer’s camp, and was routinely tested by product deliveries.

PROJECT HISTORY
The proposed project management approach was to perform a
conventional structured analysis to provide functional requirements
and a recursive, object oriented approach to the remainder of the
project Barriers to a recursive approach were csrefully tailored out
of 2167A and other elements of the contract. A work bmakdown
structure was drafted which would not obstruct the recursive life-
cycle while carefully measuring the reuse effort. It was expected
that, when later con~ct options were exercised, experience with the
recursive life-cycle would permit a fuller, more supportive w&g

of all areas of projectmanagement. Thisexpectationwasrealised~
case three, below. For the interim, a strategy of removing obstacles

to recursion was pursued. The strategy for synchronizing with the
phase-oriented products and reviews specified under the contract
was to provide the correlating object-oriented products at milestones
scheduled to permit the completion of the gross majority of such
productsundathe recursive scheme.

The contractor was aware that there would be a serious problem
providing meauingful traceability between detailed functional re-
quirements and an object oriented design, but found this dilemma
preferable to using any of the published OORAsli of the time. The
customer’s personnel attended the training in the object oriented
approach with the contractor’s personnel. The customer was per-
suaded in the course of the tmining to suggest that the contractor
employ an OORA on the lxoject, and the contractor accepted the
suggestion with enthusiasm.

In the ensuing kalysis phase” the schism in the customer’s camp
broadened, a situation which was exacerbated by the fact that the
customer was using the same contractor personnel (who were a clear
and, during this period, unified faction) in program management
support and IV&V13 roles. Despite agreements to the contrary
between the contractor and the customer, the support contractor
attempted to use its position to effect a full return to functional
analysis with a contractor-supplied tracing. As a result, this period
saw allsu~~rejectedbythecustomerbasedonfllpportconaac-
mrrecommendation. Two eventsservedtobreakthisimpasse. First,
thecontractor~facedwithcomments contradictorytostatedcustomer
positions, requested and got a high-level, bilateral meeting in which
these issues were discussed and reconciled. Second, the first round
of reviews with the customer’s clients, who were located at multiple
remote sites, failed to support the fears expressed by the support
contractor. This review presented an object oriented analysis em-
ploying object oriented models and products, which were well
received by the customer’s clients in the field. While the OORA
employed was not as well refmed or mature as analogous functional
analysis approaches, it was adequate for the applications in question
and may represent the first such delivery of CORA products in a
2167A SRS.13

In the aftermath of those reviews the overall state of the project was
recovering but not well. Engineering time intended for bottom-up
and recursive development in early project phases had been lost on
formulationandimplementationof anOORAapproachandmultiple
resubmittals of deliverables. The former might havebeen lost in any
event under a functional analysis approach when traceability would
be required to an archikchually orthogonal object oriented solution.
Despite having met all project milestones on schedule, the head start
into recursive development had been neatly sabotaged by events.
Finally, the stress of leaming and, essentially, beta testing sn impm-
vised OORA approach, combined with a long string of submittal
rejections, had badly shaken the morale of the software engineering
Staff.

At this point, the project devolved into a waterfall life-cycle. With
approximately three project months of planned recursive develop-
ment lost and a technical management faced with meeting 2167A
waterfall milestones, the process was now document driven In
addition. technical management failed to employ division of labor.
Allengineers weredeemedequalinalldevelopmentphases andused
accordingly, though this obviously could not be the case.

At least one major benefit was still derived from the object oriented
approach however. The user interface portions of the application
were being developed on a much larger related project by another
contractor. originally, the design and Ada specification parts for
these modules were scheduled to be available over eight months prior
to theproject’sCDRi*milestone. Thismaterial was stillunavailable
when CDR was held, on schedule, for those elements of the software

164

that did not directly use the interface modules. At this point,
development was suspended pending the availability of the neces-
sary modules.

MANAGER’S PERSPECTIVE
Shortly prior to the completion of project requirements, there was a
changeinprojectmanagersforthecontractor. Bothmanagerarightly
insisted that techniques be developed to determine the status and
effectiveness of any softwareengineering process instituted. Neither
wasconversantinthedetailsofanobjectoriented approachbutboth
were attitudinslly supportive to the effort to develop an effective
project management approach for its utilization and were willing to
bear with some intermediate chaos to that end

OUTCOME
CDR was held on schedule with the caveats mentioned, but with
products that were not exceptional and at far greater expense than
was necessary. The attempt to exploit combined experience in OOD
and formal 2167A development produced the following conclu-
sions:

1)

2)

3)

4)

3

The “obstacle removal” approach to contract tailoring was. in
the fiial analysis, insufficient to assure the efficient employ-
ment of a recursive life-cycIe. A more explicit and supportive
structure is necessary to effectively implement a project man-
agement process. The tailored work breakdown structure
showed work being diverted from recursive development
throughout the snalysis effo* but no effective solution was
itllPl~~ted*
Faihtre to employ basic management techniques. in this case
division of labor, added unnecessarily to the stress and ineffi-
ciency of the software engineering process.
The use of OOD enabled the contractor to complete a greater
portion of the design than would otherwise have been possible,
and &liver it on schedule.
Necessary improvements in both the software engineering
process and the products should be made to enhance product
interrelation and truly support a recursive engineering process.
The customer needed independent technical support with expe-
rience in OOD to meaningfully interpret and evaluate OOD
products. Despite customer enthusiasm for OOD, unfamiliarity
with the approach, and a support contractor working at cross
purposes effectively negatedmany potentialbenefits, including
higher quality products and greater cost effectiveness.

Employment of an object oriented approach enabled the project to
overcome circumstances that would normally have led to significant
schedule slips and cost overruna, but much more could have been
accomplished

PERSONAL OBSERVATIONS: DIN0 R. RUSSO
I became associated with the project after PDR. I was asked to
evaluate what had been done to determine what changes should be
made in order to improve the development process. A number of
things were immediately evident:

1) The requirements analysis approach had little to do with an
object orientation.

2)
3)

There was no transition from requirements to design
The application of OOD concepts was limited.

Because of the lack of customer conviction and due to the lack of
significant practical experience applying the method to a project,
many problems were encountered. The problems had a significant
impact on project morale, milestones, and products. The primary
problem, however, was the inability to apply the 00 approach
consistently across the development life-cycle.

CASE THREE

BACKGROUND
Same company and client as case two. After evaluating the problems
encountered with the previous project it Was decided that significant
changewasnecessary.The SDPand2167ADIDs weresignificantly
modifiedtorefIectthemethodinamorematureform and toapplythe
method consistently throughout the development. A significant
amount of effort was expended involving the client in the change
process, Although getting the client to accept a pure recursive life-
cycle was not completely successful, the following significant changes
were accomplished:

1) DocumentationrefIected the method. Although arequirements
specification wasrequiredas aseparateentity,therequirements
were organized around the boundary model and its identified
objects so that there was a direct transition to the SDDY

2) The PDR/CDR cycle was replaced with IDRs (although the last
IDR was to be called CDR). The IDRs would not be dog and
pony shows but instead be a working meeting between the
contractor and client to review work in progress.

3) The WBS reflected the iterative nature of OOD allowing for
overlapbetween analysisanddesignallowingformoreaccurate
measurements of effort expended.

4) Because of funding constraints, the coding and testing activities
had to be postponed. High level coding (using Ada as a PDL) is
permitted as required in the design process. Although not an
ideal situation, the impact of this constraint is minor. The
delayed activities, when funded, are simply continuations to the
method and its products.

PROJECT HISTORY
The project is currently in progress. The requirements specification,
which had been the largest stumbling block to previous CSCIs. was
produced and accepted with few problems. The SDDi6 has been
started and is ahead of schedule. The transition between the two
documents has been effortless.

OUTCOME
Not yet determined

MANAGER’S PERSPECTIVE
The project manager has acquired an understanding of the method
and has been aggressively supportive throughout the process. The
management methods necessaty to coordinate and manage the ac-
tivities involved have been modified to match the method. This was
not a small undertaking. Significant effort was expended in the
analysis of the method, measurable milestones, work breakdown
stntctures,andmetricsforevaluating workinprogress.Management
has steadfastly resisted any attempts by the contractor or support
personnel to revert to older methods of developmentor its evaluation.

ET CETERA
Each corporate activity directly supporting the development process
has expressed little less than amazement at the results to date.
Requirement specifications are much more understandable and test-
able, QA found that the consistent application of the method made
theevaluationoftheproductsmucheasier,andthesoftwareengineers
are ecstatic that their work is designed to contribute directly to the
product and not to satisfy some artificial documentation and process
criteria Pmject morale has improved significantly.

PERSONAL OBSERVATIONS
Many of the groblerns experienced with the previous project were
alleviated because the method is driving the process, rather than an
artificial set of rules defined by a DOD standard. The key to this
modificationinvolvedamature understandingofthe~Dap~h
across theentire life-cycle, andbeing able to transfer this understand-

165

ing. at least in a limited form, to the client (including the IV&V
contractor). Although the pure recursive life-cycle was not consid-
ercd acceptable to the client for financial and perceived contractual
reasons (had to have requirements baseline), we achieved approxi-
mately 75% acceptance. The remaining 25% will not have a particu-
larly detrimental impact overall. Though the project is in its relative
inf~cy,confidenceishighthattheprogramwillbeasuccessandthat
the success will allow the contractor to reduce the client’s reluctance
to let go of their traditional methods and metrics.

CASE FOUR

BACKGROUND
This project was aninternal development effort (named STRIICR) for
the Air Force at Offitt AFB from January 1988 to March 1989.

PROJECT HISTORY
The project was conducted by a team leader and three other team
members. The team members had no real training in object oriented
methods and the team leaders attempts to teach them OOD had little
success, The development methods devolved into a mixture of OOD
and Functional Decomposition using an ad hoc life-cycle and ap-
pTo=h

OUTCOME
The project was marginally successful. Although the project was
delivered on time and was marginally useful, the product was
deemed unmaintainable. The development organization refused to
turn the product over to the maintenance organization preferring to
attempt the maintenance themselves.

CASE SUMMARY
This project led to the conclusion that training in the methods would
be necessary to get the benefits of the object oriented approach and
the recursive life-cycle. It also led to the conclusion that the mixing
of methods should be avoided.

CASE FIVE

BACKGROUND
This project was an internal development effort (named M3online
and pronounced”M-cubed” on-line) for the Air Force at Offutt AFB.
The project was delivered in three builds. The first was a non-
functional prototype with a team of 5 people working from January
to July 1989. The second build contained partial functionality and
went from July 1989 toDecember 1989 withagrowthfiom2people
to 4 people in September. The third phase went from January to May
1990 and averaged three people.

PROJECT HISTORY
This project had new management which was more open to using
modern software engineering technology including object oriented
approaches and a recursive life-cycle, and was also able to work with
technologies that were newer and therefore of higher risk. The
technical team was different on the second project. Only the team
leader carried over. He and the others had now been through formal
training on the methods and life-cycles. Additionally, the character-
istics of the team members were different. The tesm leader described
them as “more dynamic individuals - younger in heart and mind.”

The team leader was also the project manager. A chief designer was
also appointed. All team members were not immediately advocates
of the object oriented methods and recursive life-cycle. However, the
team leader and chief designer did most of the initial work and the
Others soon started to see the benefits of the methods.

This project Started off with an initial analysis of the requirements.
This was fdbwed by art application of the OOD process at each level

of abstraction. However, the implementation of the software wa$
deferred longer thannecessary and was completed only after most of
the recursions had been performed.

OUTCOME
The system was delivered within the expected schedule and budget.
and hadbeen felt to be a good demonstration of the methods. This
succe.ss lead directly to the next two project efforts (cases six and
seven) and to the cOntract effort described below.

CASE SIX

BACKGROUND
This project was a rewrite of the STRIKE project (see case four).

PROJECT HISTORY
In May of 1990, a single individual was tasked to investigate the
rewriting of the STRIKE project to take advantage of the M3online
objccts.While only a single individual was tasked to this effort, that
proved sufficient The analyst was able to express the STRIKE
system as a new subsystem which was built using the M3online
objects. This development activity took approximately 4 weeks
(versus the 12 months for the initial STRIKE project). However, this
smaller 4 week activity was much less formal and did not apply the
life-cycle activities in strict order.

OUTCOME
A reuse level of 75% was achieved and maintainability was signifi-
cantly improved as compared to the original project. Also the
development time for the re-engineeting process was considerably
less than the original development time.

CASE SEVEN - A NEW KIND OF CONTRACT

BACKGROUND
From January 1989 to July 1989, the Air Force at Offutt AFB created
a new kind of contract to specifically support a recursive life-cycle
development by a contractor. The MSonline system described previ-
ously is pert of a larger system known as DGZ Construction.

PROJECT HISTORY
DGZ Construction was an existing FORTRAN system under main-
tenance by SAIC. From January to July 1989 a new contract was
written for there-engineering of the entire system (approximately 25
programs including M3online). The new system, a five year devel-
opment effort, would employ Ada and OOD to re-engineer the
existing subsystems and integrate themunder a single user interface.

Thecontractwasstrucmredas adelivery ordercontractwithmultiple
taslrs. Each of the delivery orders must be approved by the contract-
ing officer and the technical officer before the next one may proceed.
The delivery orders specify the use of object oriented methods, the
recursive life-cycle, and the Ada language,

One diiference between this and typical contracts is that the delivery
orders will not be structured as typical single life-cycle phases as in
a waterfall approach. Rather, each delivery order will ask for the
creation of all (or possibly some) products associated with a single
level of abstraction. Additionally, the statement of work specifies
that the contractor must reuse objects from the HQ SAC/SCWN
object library and that any objects created during the development
become part of that library.

Most of the problems in creating this hind of contract were not legal
or procurement issues, rather the issues were related to the technical
evaluation that was a prerequisite to the bidding process. Each
contractor was required to submit a technical proposal so that the Air
Force could evaluate their knowledge of object oriented techniques.

166

Many bidders submitted software architectures that were functional
modules with noun names. As a result, the customer had to do much
explaining to the losing bidders as to why their technical proposals
were deficient.

OUTCOME
Although the contract performance has just started (award was in
spring 1990), the early results are very positive. The contractor is
pleasedbecause they seelower risk since they srenotrequired to bid
on a five year contract up front, but instead can estimate costs and
schedule for each recursive GGD effort on a per delivery order basis.
This is especially useful since delivery orders are only issued toward
the end of an existing effort so that much more information is know
at the time. The customer organization is happy because they will be
able to actively participate in the process, achieve a significant
amount of reuse, and be able to be flexible in structuring the
requirements as changes in need evolve over the five years.

There have been no protests concerning the use of Ada, Object
Griented Development or the standard reuse library. Also no award
protests have been filed.

CONCLUSION

Just as the Waterfall life-cycle grew naturally from the development
processes employed at the time, the Recursive life-cycle is anatural
consequence of object oriented development methods. As one would
expect, this life-cycle inherits many of the advantages of the devel-
opment approach. Additionally, in as much as development suffers
when a mixed paradigm is applied, so too do projects suffer when the
life-cycle does not fit the development model. It is the hope of the
authors’ that the continued evolution towards the recursive model
presented continues to gather support and success.

BIBLIOGRAPHY

[hango, 19893. Guillermo Arango,“DGMAIN ANALYSIS: From
Art To Engineering Discipline,” Proceedings: Fifth international
Workshop on Sojtware SpecifKation and Design, ACM SIGSOFT
Engineering Notes, Vohnne 4, Number 3, May, 1989.

palfour, 19881. B. Balfour, “On ‘Unit Testing’ and Other Uses of
the Term ‘Unit,“’ MCC ‘88 Military Computing Con$mmce,
Military Computing Institute, 1988. pp. 127-130.

[Boar, 19841. Bernard H. Boar, Application Prototyping, A Re-
quirements Definition Strategy for the 80’s. John Wiley & Sons,
1984.

poehm, 19811. B. W. Boehm, Somare Engineering Economics,
Prentice-Hall, Englewood Cliffs, New Jersey, 1981.

[Boehm, 19861. B.W.Boeh.m,“ASpiralModelofDevelopmentand
Enhancement,” SopVare Engineering Notes, Vol. 11, No. 4, Au-
gust, 1986.

[Boo& 1987b]. G. Boo&, Software Engineering with Ada, Second
Edition, The Benjamin/Cummings Publishing Company, Menlo
Park, California, 1987.

[8ooch. 19901. Grady Boo&, Object-Oriented Design with Appli-
cations, The Benjamin/Cummings Publishing Company, Red-
wood City, CA, 1990. (Note: copyright date 1991).

[Cameron, 19891. John Cameron, JSP & JSD: The Jackson Ap-
proach to Sofhoare Development, Second Edition, IEEE Com-
puter Society Press, Washington, DC, 1989.

[COX, 19861. Brad J. Cox, Object Oriented Programming: An Evo-
lutionary Approach, Addison-Wesley Publishing Company,
Reading, MA. 1986.1987.

[DOD-STD-2167A]. DOD-STD-2167A. Afr’firary Standard, De-
feme System Sofmare Development, Department of Defense,
Washington, DC, 1988.

[JLC. 891. Joint Logistics Commanders, JPCG-CRM. CSM, “Soft-
ware Development Under DOD-STD-2167A: An Examinationof
Ten Key Issues,” October 25,1989.

[LRM, 19831 ANSBMILSTD-1815A-1983. ReferenceManualfor
the Ada Programming Language. United States Department of
Defense, 1983.

[Ma&or. 1989].DavidS.Maibor.“DoD-STD-2167DefenseSystem
Software Development,” David Maibor Associates, Inc. Septem-
ber, 1989.

[Royce, 19701. Royce, W. W., “Managing the Development of Large
Software Systems: Concepts and Techniques,” Proceedings,
WEXON, August. 1970.

ENDNOTES

1 The term “product” has an implication of completion. This supports a
watetfalllife-cyclebntbasnegativeimpactnponmorcpragmaticappmacbcs.
A mom liberal interpretation is in order.

*While them may he applicability to non-software development processes,
they are not pursued in thii paper.

sOther object oriented mechanisms for structuring objects, such as delegation
and generics, are not considered here due to space considerations. when
employing generics inlanguages such as Ada and Eiiel. we map the genetic
module to a pattial class design element and the instantiation to completed
classes, usually in a parent-child inheritance mlaticnship.

4 Sonrcc Lime0 of Code. The counting method employed, unless otherwise
noted, refers to the total high-level programming language statement count,
exc1udiig wmmenta and blank lines.

5 lncmentaI Development Review.

eobject Oriented Rcquinmmts Specification.

7 Computer Software Configuration Item

8 Computer Software Canponent.

10 Functioaal Qualihatia~ Test.

11 Object Oriented Rec@ernents Analysis.

Wmlependent Verification and Validation, essentially the customer’s qual-
ity evaluation function.

13 Software Requirements Specification.

14 Critical Design Review, the culmination of the 2167A detailed design
phase.

r%ftwrue Design Document - actually the document is a software develop-
ment document containing analysis, design, and implementation products.
The SPS is merely the completed version of the SDD.

167

