
SOFTWARE ENGINEERING LABORATORY SERIES SEL-95-102

SOFTWARE PROCESS
IMPROVEMENT GUIDEBOOK

Revision 1

MARCH 1996

National Aeronautics and
Space administration

Goddard Space Flight Center
Greenbelt, Maryland 20771



iii SEL-95-102

Foreword

The Software Engineering Laboratory (SEL) is an organization sponsored by the National
Aeronautics and Space Administration/Goddard Space Flight Center (NASA/GSFC) and created
to investigate the effectiveness of software engineering technologies when applied to the
development of applications software.  The SEL was created in 1976 and has three primary
organizational members:

NASA/GSFC, Software Engineering Branch

University of Maryland , Department of Computer Science

Computer Sciences Corporation, Software Engineering Operation

The goals of the SEL are (1) to understand the software development process in the GSFC
environment; (2) to measure the effects of various methodologies, tools, and models on this
process; and (3) to identify and then to apply successful development practices.  The activities,
findings, and recommendations of the SEL are recorded in the Software Engineering Laboratory
Series, a continuing series of reports that includes this document.

This Software Process Improvement Guidebook has also been released as NASA-GB-001-95, a
product of the NASA Software Program, an Agency-wide program to promote continual
improvement of software engineering within NASA.

The following are primary contributors to this document:

Kellyann Jeletic, Goddard Space Flight Center

Rose Pajerski, Goddard Space Flight Center

Cindy Brown, Computer Sciences Corporation

Single copies of this document can be obtained by writing to

Software Engineering Branch
Code 552
Goddard Space Flight Center
Greenbelt, Maryland 20771





v SEL-95-102

Abstract

This Software Process Improvement Guidebook provides experience-based guidance for
implementing a software process improvement program in any NASA software development or
maintenance community.  It describes the program’s concepts and basic organizational
components and provides details on how to define, operate, and implement a working software
process improvement program.  The guidebook also illustrates all these concepts using specific
NASA examples.





vii SEL-95-102

Contents

Foreword

Chapter 1. Introduction

1.1 Background.....................................................................................................................2

1.2 Purpose ...........................................................................................................................2

1.3 Organization....................................................................................................................3

Chapter 2. The Software Process Improvement Framework

2.1 The Software Process Improvement Organization............................................................6

2.2 The Software Process Improvement Approach.................................................................9

2.2.1 Phase 1—Understanding...................................................................................9
2.2.2 Phase 2—Assessing........................................................................................15
2.2.3 Phase 3—Packaging.......................................................................................19

2.3 Domains for Software Process Improvement..................................................................21

2.4 Comparison of Two Software Process Improvement Approaches..................................23

Chapter 3. Structure and Operation of the Software Process
Improvement Organization

3.1 Components of the NASA Software Process Improvement Organization.......................30

3.2 Developers....................................................................................................................34

3.2.1 Overview........................................................................................................34
3.2.2 Resources.......................................................................................................34
3.2.3 Activities ........................................................................................................35

3.3 Analysts.........................................................................................................................37

3.3.1 Overview........................................................................................................37
3.3.2 Resources.......................................................................................................37
3.3.3 Activities ........................................................................................................38

3.4 Support Staff .................................................................................................................40

3.4.1 Overview........................................................................................................40
3.4.2 Resources.......................................................................................................40
3.4.3 Activities ........................................................................................................41

3.5 Summary.......................................................................................................................43



SEL-95-102 viii

Chapter 4. Implementation of the Software Process Improvement
Program

4.1 Obtain Commitment.......................................................................................................46

4.2 Establish Structure.........................................................................................................48

4.3 Establish Process...........................................................................................................49

4.4 Produce a Baseline.........................................................................................................49

4.5 Start Operation..............................................................................................................51

Chapter 5. Management of the Software Process Improvement
Program

5.1 Cost Issues ....................................................................................................................54

5.1.1 Overhead to Developers.................................................................................55
5.1.2 Cost of Support Staff......................................................................................56
5.1.3 Cost of Analysts.............................................................................................57

5.2 Benefits Obtained..........................................................................................................58

5.3 Key Management Guidelines..........................................................................................62

Appendix A. Glossary of Terms

Abbreviations and Acronyms

References

Index

Standard Bibliography of SEL Literature



ix SEL-95-102

Figures

2-1 Software Process Improvement Organization...................................................................8

2-2 Three-Phase Approach to Software Process Improvement ...............................................9

2-3 NASA Operational Software Domains...........................................................................11

2-4 NASA Software Resources............................................................................................11

2-5 NASA Language Preferences and Trends.......................................................................12

2-6 Effort Distribution by Time............................................................................................13

2-7 Effort Distribution by Activity........................................................................................13

2-8 Error Distribution by Class............................................................................................13

2-9 Error Distribution by Origin...........................................................................................13

2-10 Error Detection Rate .....................................................................................................14

2-11 Sample Process Relationships........................................................................................14

2-12 Assessing the Impact of Inspections...............................................................................17

2-13 Assessing the Impact of Cleanroom on Process..............................................................18

2-14 Assessing the Impact of Cleanroom on Product.............................................................18

2-15 Packaging Experiences With Inspections........................................................................20

2-16 Packaging Experiences With Cleanroom........................................................................21

2-17 Examples of Potential Domains Within NASA...............................................................23

2-18 CMM and NASA Software Process Improvement Paradigms.........................................25

3-1 Activities of the Software Process Improvement Organization.......................................31

3-2 Sample Process Improvement Organization...................................................................38

4-1 Sample Process Improvement Organizational Structure..................................................48

5-1 Cost of Software Process Improvement .........................................................................56

5-2 Improvements in Product—Reliability............................................................................59

5-3 Improvements in Product—Reuse..................................................................................60

5-4 Improvements in Product—Cost....................................................................................60

5-5 Improvements in Product—Development Cycle Time....................................................61

5-6 Long-Term Reliability Trends........................................................................................62



SEL-95-102 x

Tables

2-1 Focus of Software Process Improvement Organization Components................................7

2-2 Role of the Analysis Organization....................................................................................8

2-3 The NASA Software Process Improvement Approach Versus the CMM........................27

3-1 Activities of the Developers...........................................................................................31

3-2 Activities Before or at Project Start ...............................................................................32

3-3 Activities During the Project..........................................................................................33

3-4 Activities At or After Project Completion ......................................................................33

4-1 Key Lessons in Data Collection for Baselining...............................................................51

5-1 Impacts to Software Process..........................................................................................61

5-2 Key Lessons in Starting a Process Improvement Program..............................................63



1 SEL-95-102

Chapter 1.  Introduction

Document Highlights

CHAPTER 1:
Introduction

CHAPTER 2:
Software Process Improvement
Framework

Organization

Understand

Domains

Assess

Package

CHAPTER 3:
Structure and Operation of the
Software Process Improvement
Organization

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A

AAAAAAAAAAAAAAAAAAAAAAAAA
AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAA
AAA

AAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAA
AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

A
A

AAAA

AAAA
AAAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

A
A
A
A
A
A
A
A

AA
AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA
AA
AA

AAAA

AAAA
AAAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

A
A
A
A
A
A
A
A

AA
AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA
AA
AA

AAA

AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

A
A
A
A
A
A
A
A

A
A
A
A
A
A
A
A

AA
AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA
AA
AA

AAAA

AAAA
AAAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AA
AA
AA
AA
AA
AA
AA
AA

A
A
A
A
A
A
A
A

AA
AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA
AA
AA

AAAA

AAAA
AAAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AA
AA
AA
AA
AA
AA
AA
AA

A
A
A
A
A
A
A
A

AA
AA
AA
AA
AA
AA
AA
AA

A
A
A
A
A
A
A
A

AAAA

AAAA
AAAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

A
A
A
A
A
A
A
A

AA
AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA
AA
AA

AAAA

AAAA
AAAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AA
AA
AA
AA
AA
AA
AA
AA

A
A
A
A
A
A
A
A

AA
AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA
AA
AA

Developers

Analysts

Support Staff

CHAPTER 4:
Implementation of the Software
Process Improvement Program

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
AAAAA

AAAA
AAA
AAA

AAAA
AAAA

A
A

AAAA
AAAA

AA
AA

AAAA
AAAA

A
A

AAAA
AAAA

A
A

AAAA
AAAA

A
A

AAAA
AAAA

A
A

AAAA
AAAA

A
A

AAAA
AAAA

A
A

AAAA
AAAA

AA
AA

AAAA
AAAA

A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAA
AAA
AAA
AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAAA
AAAA
AAAA
AAA
AAA
AAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA

Commitment

Structure

Process

Baseline

Start

CHAPTER 5:
Management of the Software
Process Improvement Program

Benefits

Cost

Key  Points



SEL-95-102 2

1.1 Background

ne of the most significant challenges faced by the software engineering community in
recent years has been to continually capitalize on software development and maintenance
experiences, whether good or bad. Capitalizing involves application of new technologies

and evolution of technologies already widely in use, as well as the definition and adoption of
standards. One goal of software engineering practitioners is to make sure that all those activities,
which generally can be classified as process and product improvements, are based upon
understanding the impact on the target application domain in an appropriate way.

There is an evident need to implement some means by which every software activity provides new
and improved insight into continually improving methods for developing and maintaining
software; every experience must be used to gain new knowledge. To do so, every software
organization should be embedded in an infrastructure aimed at capitalizing on previous
experience. This concept is derived from several specific programs within the National
Aeronautics and Space Administration (NASA) [e.g., the Software Engineering Laboratory (SEL)
of NASA/Goddard Space Flight Center (GSFC), the Software Engineering and Analysis
Laboratory (SEAL) at NASA/Langley Research Center (LaRC), and the Jet Propulsion
Laboratory’s (JPL’s) Software Resource Center (SORCE)] and is similar in functionality to
another concept called the software Experience Factory (Reference 1). Continual improvement
based on specific experiences is the underlying concept of the NASA software process
improvement program.

Although not specifically designated in the title, both software process and software product are
emphasized in this guidebook and the overall NASA program. Improvements in the software
process result in measurable improvements to the software product, hence “software process
improvement” implies “software process AND product improvement.” The importance of both is
emphasized throughout this document.

The NASA software process improvement program supports continual software quality
improvement and the use and reuse of software experience by developing, updating, and making
available key software technologies, knowledge, and products originating from operational
software projects and specific experimentation.

This guidebook addresses the needs of the NASA software community by offering a framework
based on an evolutionary approach to quality management tailored for the software business. This
approach is supported by an organizational infrastructure for capturing and packaging software
experiences and supplying them to ongoing and future projects.

1.2 Purpose

The purpose of this document is to provide experience-based guidance in implementing a software
process improvement program in any NASA software development or maintenance community.

This guidebook details how to define, operate, and implement a working software process
improvement program. It describes the concept of the software process improvement program
and its basic organizational components. It then describes the structure, organization, and
operation of the software process improvement program, illustrating all these concepts with

O



3 SEL-95-102

specific NASA examples. The information presented in the document is derived from the
experiences of several NASA software organizations, including the SEL, the SEAL, and the
SORCE. Their experiences reflect many of the elements of software process improvement within
NASA.

This guidebook presents lessons learned in a form usable by anyone considering establishing a
software process improvement program within his or her own environment. This guidebook
attempts to balance general and detailed information. It provides material general enough to be
usable by NASA organizations whose characteristics do not directly match those of the sources of
the information and models presented herein. It also keeps the ideas sufficiently close to the
sources of the practical experiences that have generated the models and information.

1.3 Organization

This “Introduction” is followed by four additional chapters.

Chapter 2 presents an overview of concepts pertaining to software process improvement,
including the organizational structure needed to support process improvement, the three-phase
software process improvement approach, the scope of an organization to which process
improvement is to be applied (domain), and the unique aspects of the software process
improvement framework presented in this document versus other software process improvement
approaches.

Chapter 3 presents the structure of a typical NASA software process improvement program and
describes the major components of the software process improvement organization. The chapter
gives an overview of each of the three organizational components and discusses the resources
each component requires. It also presents details regarding the operation of the software process
improvement program, describing the responsibilities, activities, and interaction of each of the
three organizational elements. The chapter details how each component performs the activities
associated with its process improvement responsibilities and how the three groups interact and
operate on a daily basis.

Chapter 4 presents the steps for implementing software process improvement in an organization.

Chapter 5 addresses key management issues associated with the implementation and operation of
a software process improvement program, including cost and potential benefits.





5 SEL-95-102

Chapter 2.  The Software Process Improvement
Framework

Chapter Highlights

STRUCTURE

• Developers
• Analysts
• Support Staff

APPROACH

• Understanding
• Assessing
• Packaging

DOMAINS

• Scope of an organization to
which process improvement is
to be applied

• Transfer of information across
domains

• Improvement of software within
a domain

VARIOUS  APPROACHES

• NASA Approach
• Capability Maturity Model
• Emphasis on the need for

continual, sustained improvement
of software



SEL-95-102 6

his chapter provides an overview of concepts pertaining to software process improvement
within NASA. The first section discusses the key components of the software process
improvement framework, specifically, the organizational structure needed to facilitate

process improvement. The next sections cover the three-phase software process improvement
approach and related concepts including “domain.” (A domain is a classification scheme as it
pertains to the application of the process improvement approach within a specific organization.)
The last section discusses the unique aspects of this process improvement framework with respect
to other process improvement approaches. Some of the concepts introduced in this chapter are
discussed in further detail in later chapters.

2.1 The Software Process Improvement Organization

Historically, software organizations have exhibited significant shortcomings in their ability to
capitalize on the experiences gained from completed projects. Most of the insight has been
passively obtained instead of aggressively pursued through specific plans and organizational
infrastructures.

Software developers and managers, although well-meaning and interested, generally do not have
the time or resources to focus on building corporate knowledge or organizational process
improvements. (For this document, a “software developer” is defined to be any technical project
personnel, including designers, development and maintenance programmers, technical managers,
and any other technical contributors.) They have projects to run and software to deliver. Thus,
collective learning and experience must become a corporate concern and be treated as a company
asset. Reuse of experience and collective learning should be supported by an organizational
infrastructure dedicated to developing, updating, and supplying upon request synthesized
experiences and competencies. This infrastructure should emphasize achieving continual sustained
improvement.

Software process improvement organizations within NASA are structures devoted to using
lessons, data, and general experience from software projects to ensure that ongoing and ensuing
efforts use the experiences gained to continually improve the associated organization’s software
products and processes.

Software process improvement organizations within NASA are dedicated to software process
improvement and the reuse of experience. Each NASA software process improvement
organization consists of

• Developers, who design, implement, and maintain software. They also provide project
documentation and data gathered during development and operations.

• Process Analysts (hereafter referred to as analysts), who transform the data and
information provided by the developers into reusable forms (e.g., standards, models,
training) and supply them back to the developers. They provide specific support to the
projects on the use of the analyzed and synthesized information, tailoring it to a format
that is usable by and useful to a current software effort. In some programs, this element
may be called the Software Engineering Process Group (SEPG).

• Support Staff, who provide services to the developers by supporting data collection and
retrieval and to the analysts by managing the repository of information.

T



7 SEL-95-102

Although separate, these three components are intimately related to each other. Each component
has its own goals, process, and plans, but together all three components have the mission of
providing software that is continually improving in quality and cost effectiveness. Table 2-1
outlines the differences in focus among the three components comprising the software process
improvement organization.

Table 2-1.  Focus of Software Process Improvement Organization Components

Area Developers Analysts Support Staff

Focus and
Scope

Specific project Multiple projects (specific
domain)

Multiple projects (specific
domain)

Goals Produce, maintain
software

Satisfy user requirements

Analyze and package
experience

Support developers

Archive, maintain, and
distribute development
and maintenance
experience

Approach Use the most effective
software engineering
techniques

Assess the impact of
specific technologies

Package experience into
models, standards, etc.

Maintain a repository of
experiences, models,
standards, etc.

Measure of
Success

Delivery of quality
software products on
time and within budget

Reuse of empirical
software experience by
developers

Improved products

Efficient collection,
storage, and retrieval of
information (data,
models, reports, etc.)

The developers’ goal is to deliver a software system. Their success is measured by delivering, on
time and within budget, a software product that meets the needs of the user.

The analysts’ goal is to analyze and package experiences into a form useful to the developers.
They use information such as development environment profile, methods, characteristics,
resources breakdown and utilization, error classes, and statistics to produce models of products
and processes, evaluations, and refined development information. This set of products could
include cost models, reliability models, domain-specific architectures and components, process
models, policies, and tools. Every product of the analysts is derived from specific experiences of
the developers. The success of the analysts is measured by their ability to provide to the
developers, in a timely way, useful products, processes, and information. Ultimately, the success
of the analysts is measured by improved software products.

The success of the support staff is measured by the efficiency of the information collection,
storage, and retrieval system, and the degree to which it relieves the overall organization of
unnecessary activities and waiting periods.

Figure 2-1 provides a high-level picture of the software process improvement organization and
highlights activities and information flows among its three components.

The developers produce and maintain software but are not directly responsible for capturing the
reusable experience. They provide the analysts with project and environment characteristics,
development data, resource usage information, quality records, and process information. The



SEL-95-102 8

Project Organization Analysis Organization

Developers Analysts

Development data and 
software product characteristics

Packaged experience

Support Organization

 Develop/maintain software • Analyze software process and products 
• Package process improvements

 Maintain repository of development information and packaged experiences

Process feedback

Tailored processes 
and models

Figure 2-1.  Software Process Improvement Organization

developers also provide feedback on the actual performance of the models produced by the
analysts and used by the project. Therefore, with respect to software process improvement, the
developers have the global responsibility for using, in the most effective way, the packaged
experiences to deliver high-quality software.

The analysts, by processing the information received from the developers, produce models of
products and processes and return direct feedback to each project. They also produce and provide
baselines, tools, lessons learned, and data, parameterized in some form in order to be adapted to
the characteristics of a project.

The support staff sustain and facilitate the interaction between developers and analysts by saving
and maintaining the information, making it efficiently retrievable, and controlling and monitoring
access to it. They use tools that assist in collecting, validating, and redistributing data and reusable
experience.

The roles of the developers and support staff in software process improvement are easily
understood. The role of the analysts is less clear; however, based on the information stated thus
far, Table 2-2 summarizes what the role of the analysis organization is and is not.

Table 2-2.  Role of the Analysis Organization

The analysis organization IS The analysis organization IS NOT

An organization; it has people and structure

A domain-specific infrastructure

Separate from the developers but works closely
with them

Variable in size (driven by the size of the
development organization)

A quality assurance or independent verification
and validation (IV&V) organization

A research laboratory

A management infrastructure

An audit organization



9 SEL-95-102

The ultimate goal of a software process improvement organization is to understand and repeat
successes and to understand and avoid failures. Therefore, the software process improvement
organization’s processes and operations must be based on solid and objective development
experience. Thus, a measurement-based approach is needed for project management, evaluation,
and decision making. Software measures are applied to process, product, and resources.
Measurement is one of the basic tools available to the software process improvement organization
for performing its tasks and to management for controlling and improving the efficiency of the
whole infrastructure.

2.2 The Software Process Improvement Approach

The goal of any NASA software process improvement program is continual process and product
improvement. To attain this goal, the program uses a process approach consisting of three major
phases: Understanding, Assessing, and Packaging. These phases are continually executed in any
development environment within the organization. Figure 2-2 illustrates these three phases.

Improvement 
goal

Capture improved techniques as a part of modified process, e.g., 

ASSESSING

PACKAGING

Determine the impact of a change, e.g., 

ITERATE

UNDERSTANDING

Build a baseline of process and products, e.g., 

Continual improvement over time

 • Incorporate inspections into development standard 
 • Develop inspections training program

 • Does object-oriented design produce more reusable code? 
 • Do inspections result in lower error rates?

 • What development techniques are used? 
 • What is the unit cost of software? 
 • What types of errors are most common? 
 • How much reuse occurs?

Figure 2-2.  Three-Phase Approach to Software Process Improvement

The remainder of this section describes these three phases in more detail.

2.2.1 Phase 1—Understanding
In the Understanding Phase, the organization’s process
and products are characterized and high-level goals for
improvement are identified. The purpose of this phase is
to continually capture the characteristics of the software

process and products within the project organization and produce models, relationships, and
general descriptions of the process and products. Understanding is the required starting point of
the overall process improvement sequence, and it never ends, because changes must always be
understood and characterized. Without this baseline of the process, products, and environment,
no basis for change or improvement exists. A determination for change and improvement can be
made and quantitative goals set only when the characteristics of the ongoing process and products
are captured and understood.

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA
AA

UNDERSTANDING

ASSESSING

PACKAGINGITERATE

Goal



SEL-95-102 10

Understanding is the phase in which the software baseline is established and is the most critical
phase of the improvement approach; however, this phase is often ignored. The developers and
analysts characterize the organizational environment, describing it in terms of relevant processes
and models. The environment is characterized by using available data, both objective and
subjective. The existing processes and products are characterized and modeled through measured
experience. Based on the baseline findings, a specific organization can identify high-level goals for
improvement (e.g., cut cost, improve reliability). Each organization must determine what types of
improvement goals are most important in its local environment. Having a baseline allows the
organization to set goals that are based on the need for specific self-improvements.

The baseline of the software organization is captured in the form of models (e.g., cost models,
error models), relationships (e.g., relationship between testing time and error density), and
characteristics (e.g., what standards are used, what techniques are used for performing specific
activities). Although the type of information collected in the Understanding Phase is relatively
generic and common across software organizations, specific characteristics that are derived from
the particular goals and needs of the software organizations should always be considered. These
specifics are product characteristics such as cost, size, and errors, and process characteristics such
as effort distribution and resources usage. Understanding such environment-specific
characteristics is necessary so that the organization can plan improvements in the context of local
goals. For instance, if the organization’s high-level goal is to improve productivity, it must
understand (baseline) its current productivity rate and process and product characteristics. Using
the baseline as the basis for improvement allows the organization to set specific, quantitative
goals. For example, rather than striving to simply reduce the error rate, an organization can
establish a more specific, measurable goal of reducing the error rate by 50 percent.

Figures 2-3 through 2-5 show some baseline information recently gathered for NASA as a whole
(Reference 2). During the baseline period, NASA had developed more than 6 million source lines
of code (MSLOC) and had over 160 MSLOC in operational usage. The baseline established that
nearly 80 percent of NASA’s software work is contracted to industry and educational institutions.

Figure 2-3 shows the distribution of NASA software domains for operational software. Mission
ground support and general support software were found to be the largest and most prevalent
software domains, accounting for almost 60 percent of all NASA software. Administrative/IRM
software was the next largest domain, accounting for almost 20 percent of NASA software. The
science analysis, research, and flight software domains were much smaller in size.

Figure 2-4 shows the amount of resources NASA invested in software. As indicated, more than
10 percent of NASA’s workforce spent the majority of their time (i.e., more than half time) on
software-related activities including software management, development, maintenance, quality
assurance, and verification and validation. NASA invested a significant amount of manpower
budgetary resources in software.



11 SEL-95-102

Flight/Embedded 
(10 MSLOC) 

6%

Mission Ground Support 
(59 MSLOC) 

37%

General Support 
(35 MSLOC) 

22%

Science Analysis 
(20 MSLOC) 

13%

Administrative/IRM 
(30 MSLOC) 

19%

Simulation, Research 
(6 MSLOC) 

4%

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

Figure 2-3.  NASA Operational Software Domains

Software Versus Total Costs Software Versus Total Staffing

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

$1 Billion 

Software 

Costs

 $13 Billion  

Nonsoftware 

Costs

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

Software 

Personnel 

8,400 

Nonsoftware 

Personnel 

71,300

Figure 2-4.  NASA Software Resources

Figure 2-5 shows the distribution of languages used for software in operations and under
development. As shown, the use of FORTRAN, along with COBOL and other languages (e.g.,
Assembler, Pascal), has decreased significantly; presumably these languages are being replaced by
C/C++. The use of both C/C++ and Ada has increased dramatically, though Ada use is not as
widespread as C/C++. Nevertheless, FORTRAN development is still substantial, indicating its use
will likely continue for some time.

For a global-level organization, such as NASA as a whole, the baseline is necessarily at a much
more general level than in organizations locally implementing the software process improvement
approach. Most models, for instance, would make sense only with respect to particular domains
(e.g., flight software or administrative software), not for the Agency as a whole. Local models
(e.g., cost and reliability models) can be developed for specific organizations to help engineer the
process on ongoing and future projects.



SEL-95-102 12

0

10

20

30

40

50

Other
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

12%

35%

Ada
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

11%

2%

C/C++
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

47%

12%

Cobol
AAAA
AAAA

AAAA
AAAA

<.5%

6%

FORTRAN

Operational software

AAAA
AAAA
AAAA

Software under development

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

29%

45%%

Figure 2-5.  NASA Language Preferences and Trends

The following examples illustrate the Understanding Phase at a local organizational level. The
examples use data from a major software organization at NASA that has continually collected and
studied development data for general support systems. The data represent over 500 staff-years of
effort and are from over 25 systems completed in the mid- and late- 1980s. These data were
extracted and analyzed to build the basic understanding parameters including two of the most
basic, yet often overlooked, characteristics of software: effort distribution and error profiles.

By collecting data readily available during the development process, the organization gained
understanding of where the development effort for the software process was being expended—
among design, coding, testing, and other activities (such as training, meetings, etc.). Although
extremely easy to obtain, such basic information is often ignored.

Example 1:  Understanding Effort Distribution

Figure 2-6 shows the distribution of effort by time. Typically, 26 percent of the total effort
is spent in the design phase, that is, the period from onset of requirements analysis through
critical design review (CDR); 37 percent in the code phase, that is, from CDR through
code completion and unit testing; and the remaining 37 percent in the test phase, that is,
integration, system, and acceptance testing.

Viewing effort distribution from a different perspective, Figure 2-7 breaks down specific
development activities, showing the amount of time attributed to each as reported by the
individual programmers rather than in a date-dependent manner. Throughout the project,
programmers report hours spent in these categories. The analysts examine the developer-
supplied information across many projects and then determine the typical effort
distribution for this particular organization. As this figure shows, 23 percent of the
developers’ total effort is spent in design; 21 percent in code; 30 percent in test; and 26
percent in other activities including training, meetings, documentation (e.g., system
descriptions and user’s guides), and management. Such basic information can then be used
to generate local models, such as a “cost by activity” model.



13 SEL-95-102

Date Dependent

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

Test 
37%

Design 
26%

Code 
37%

Programmer Reporting

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

Test 
30%

Design 
23%

Code 
21%

Other 
26%

   Figure 2-6.  Effort Distribution by Time  Figure 2-7.  Effort Distribution by Activity

Example 2:  Understanding Error Profiles

A second example of the characterization performed in the Understanding Phase is found
in error characteristics. Based on the same projects for NASA ground systems, error
profiles based on over 500 reported development errors are depicted in Figures 2-8 and
2-9. These data provide some initial insight into the error profiles, which in turn can lead
to a more structured approach to addressing certain error characteristics in future systems.

Figure 2-8 shows the breakdown of all errors by class. This figure shows what types of
errors exist and how they are distributed across classes, as classes are defined by the
specific organization.

Figure 2-9 depicts how the software errors found in an environment are distributed into
different classes based on their recognized origin. In this example, 50 percent of errors
originate from requirements, 20 percent from design, 20 percent from coding, and 10
percent from clerical sources. The overall error rate for this organization was six errors
per thousand source lines of code (KSLOC).

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

Computational

Data

Initialization

15%

Logic/ 

Control

30%

Interface

18%

13%

24%

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

Require-
ments

50%

Implementation

Design20%

Clerical

10%

20%

Figure 2-8.  Error Distribution by Class Figure 2-9.  Error Distribution by Origin

Basic information about errors can lead to the development of error-related models, such
as error detection rate. Figure 2-10 shows the error detection rate for five projects of
similar complexity in the same environment. This organization typically sees the error rate
cut in half each time the system progresses to the next life-cycle phase. This type of



SEL-95-102 14

information leads to the important step of producing models that can be used on ensuing
projects to better predict and manage the software quality within the different phases.

Code/Test System Test Acceptance Test Operations
0

1

2

3

4

5

6

E
rr

or
s/

K
S

LO
C

Figure 2-10.  Error Detection Rate

Example 3:  Understanding Other Models and Relationships

Figure 2-11 provides examples of other models and relationships that have been developed
as useful profiles of a specific environment. Reference 3 discusses these and other
relationships and how they can be applied.

Effort (in staff-months)  = 1.48 * (KSLOC) 
 
Duration (in months)  = 4.6 * (KSLOC) 
 
Pages of Documentation  = 34.7 * (KSLOC) 
 
Annual Maintenance Cost  = 0.12 * (Development Cost) 
 
Average Staff Size  = 0.24 * (Effort)

0.98

0.26

0.93

0.73

Figure 2-11.  Sample Process Relationships

These examples are typical products of the characterization activity performed in the
Understanding Phase. They are based on actual data collected in a production environment and
represent the situation before (or at a specific milestone of) an improvement initiative. The
examples are domain-specific and, although essential for understanding a specific environment and
controlling improvement, they are not universally applicable to other domains. The concept of
building the understanding (baseline) is applicable to all domains; however, the specific models
produced and organizational goals set may not be.

2.2.2 Phase 2—Assessing

In the Assessing Phase1, specific objectives for
improvement are set, one or more changes are
introduced into the current process, and the changes are
then analyzed to assess their impact on both product and

                                               
1 Within the context of process improvement, the term “assessing” refers to an evaluation of the effect of

introducing a change. It should not be confused with the usage of the term assessment as regards CMM
organizational process capability evaluations.

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA
AAA

UNDERSTANDING

ASSESSING

PACKAGINGITERATE

Goal



15 SEL-95-102

process. Change may include introducing a method, tool, or management approach. This phase
generally is thought of as the experimental step in which some defined change to the process is
evaluated against the baseline. The changes are studied through specific experiments conducted in
selected projects.

Experimentation is defined as the steps taken to set objectives based on a project’s software
improvement goals for the specific assessment; introduce some change to the baseline process;
collect detailed information as the changed process (i.e., the experiment) progresses; compare the
results of the experiment against the baseline values established in the Understanding Phase; and,
finally, determine if the change that was introduced met the objectives established for the
assessment/experiment.

The choices made in this phase are driven by the characteristics and high-level organizational
goals identified in the Understanding Phase. Experiment objectives are set and quantified
according to the data collected in the baseline. Reference 4 provides information on a mechanism
[the Goal/Question/Metric (GQM) paradigm] for defining and evaluating a set of operational
goals using measurement on a specific project. The questions addressed in the Assessing Phase
depend on both the overall goal and the chosen process change. For instance, if a cycle time of 2
years per system has been measured over the last 10 years, a possible goal might be to decrease
the cycle time to 18 months over the course of the next several years. Another organization may
wish to focus a specific experiment on improving reliability (i.e., reducing error rates) and might
introduce software inspections to attain that goal. The inspections’ assessment would answer the
question “Does the use of software inspections result in the production of more reliable
software?”

To carry out the assessment process, several basic requirements must be fulfilled. First, some kind
of baseline or norm must exist against which the assessment data can be compared. This baseline
is provided by the Understanding Phase. In some cases, however, further information is needed to
provide a reasonable comparison base for the Assessing Phase, for example, experience level of
the developers or level of receptiveness to change. Second, the organization must prioritize
changes and select the ones on which it will focus. Although any organization would certainly
aspire to attain all improvement goals at once, the assessment of changes through experimentation
proceeds slowly. The effect of too many concurrent changes cannot be controlled, and the whole
assessment would be compromised. Additional complexities exist within the Assessing Phase
because essentially all measures of change are coupled to other measures. For instance, to
improve reliability (i.e., reduce error rates), cost might be added to the development process.
Third, the organization must state its goals (e.g., fewer errors, higher productivity) in a
measurable way (e.g., the number of errors per KSLOC should be less than 4.0; the number of
statements developed and tested per hour should be higher than 3.5). Although achieving the
measured goal is a good indicator of success, the subjective experience of the developers must
also be considered in the assessment.

Examples 4 and 5 illustrate specific assessments performed within NASA.

Example 4:  Assessing Inspections

Formal inspections are technical reviews that focus on detecting and removing software
defects as early in the development life cycle as possible. The goal of introducing



SEL-95-102 16

inspections in one NASA organization, JPL, was to increase the quality of the following
products of software systems: software requirements, architectural design, detailed design,
source code, test plans, and test procedures. By doing so, the overall quality of the
software would be improved and cost would be reduced by detecting defects early
(Reference 5). In the Understanding Phase, the cost to detect and fix a defect found in
formal testing was determined to be between 5 and 17 hours (the defect has to be traced,
found, fixed, and retested). In the Assessing Phase, inspections were introduced and their
impact measured. Because inspections were introduced early in the development life cycle
when most products are technical documents, the reporting metric was number of pages
rather than estimated lines of code. As Figure 2-12 shows, a higher density of defects was
detected in earlier life-cycle products than in later ones. Not only was the overall software
quality improved by reducing rework during testing and maintenance, but costs were
reduced by finding defects earlier in the life cycle. On average, finding and fixing defects
found during inspections took 1.1 hours and 0.5 hours, respectively—a significant savings
compared to the previous range of 5 to 17 hours for both. Inspections have subsequently
been introduced at other NASA centers, and their assessments have also been favorable.

The importance of the Understanding Phase cannot be overemphasized. In this example, without
the established baseline, the assessment would have been purely subjective, relying solely on
opinions of people within the  organization as to whether inspections helped, did nothing, or
perhaps even hindered the development process. Changes introduced by the software organization
to address some goal of improvement will always have multiple impacts that must be considered,
such as the added cost and overhead of making a change. In this example, several measures, such
as additional cost, development time, and final defect rates, must be analyzed to ensure that the
full impact of the change is understood.

Not all assessments will be positive. The assessment results might show positive impact, no
change, or even negative impact on the factors being examined.



17 SEL-95-102

INTERMEDIATE SOFTWARE PRODUCTS

A
ve

ra
ge

 N
um

be
r 

of
 D

e
fe

ct
s 

F
ou

nd
 p

er
 P

a
ge

Requirements** Architectural 
Design

Detailed 
Design

Code**
0

0.5

1

1.5

2

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAA
AAAAAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA
AAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AA
AA

All defects
Minor defects*

Major defects*AAAAAAA

Major defects cause systems to fail during operations or prevent systems 
from fulfilling a requirement. 
Minor defects are all other defects that are nontrivial.  Trivial defects 
include grammar and spelling errors; these were noted and corrected but 
not included in this analysis. 
Statistical tests showed a significant difference between the defect 
densities found in requirements and code inspections.  This analysis is 
based upon a sample of 203 inspections performed on six JPL projects.

*

**

Figure 2-12.  Assessing the Impact of Inspections

Example 5:  Assessing Cleanroom

Another sample assessment, the use of the Cleanroom process (Reference 6), is also
provided. Cleanroom is a software process developed by Harlan Mills (International
Business Machines) that focuses on producing error-free software and results in a product
with certifiable reliability. The Cleanroom process was selected to attain the goal of
improving the reliability of delivered software without penalty to the overall development
cost. Significant process changes included using formal code inspections, applying the
formal design concept of box structures, using rigorous testing approaches driven by
statistical methods, and providing extended training in software engineering disciplines
such as design by abstraction.

In 1987, the first Cleanroom project was selected, the team trained, the experiment plan
written, and the development process and product meticulously measured. Process
impacts were observed at several levels, including increased effort spent in design and a
different coding activity profile. Figure 2-13 illustrates these impacts.

This first experiment (Reference 7) resulted in impressive product gains in both reliability
(38 percent) and productivity (54 percent) when compared with existing baselines
(Figure 2-14). However, because this first project was small [40,000 developed lines of
code (DLOC)], two additional projects were selected using a refined set of Cleanroom
processes derived from the first project’s experiences (Reference 8). These later projects
provided additional evidence that components of the Cleanroom process were effective in
reducing error rates while maintaining productivity for smaller projects, but the larger
project had a smaller reliability improvement (14 percent) with a 23 percent reduction in
productivity.



SEL-95-102 18

Distribution of All Activities:  
Slight Impact on Design and Code

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

Design 
33%

Code 
19%

Test 
27%

Other 
21%

Cleanroom ProjectsBaseline

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

Code 
25%

Test 
28%

Other 
20% Design 

27%

Code Activities Only: 
Substantial Process Impact

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

Code
Reading

52%

Code 
Writing 

48%

Cleanroom Projects

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

Code 
Writing 
80%

Code 
Reading 

20%

Baseline

Figure 2-13.  Assessing the Impact of Cleanroom on Process

Figure 2-14 illustrates the impact of the Cleanroom process on the product. As a result,
key Cleanroom concepts, such as focused inspections and process training, have been
infused into the standard organizational process, but other aspects are undergoing further
analysis until the cost differences are more fully explained.

Errors per KDLOC Productivity (DLOC per day)

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A

7.0

4.3
3.3

6.0

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A

26

40

26
20

Baseline (1982–1984)

1st Cleanroom (40 KDLOC, 1/88–9/90)
AAA
AAA
AAA 3rd Cleanroom (160 KDLOC, 2/90–6/92)

2nd Cleanroom (23 KDLOC, 4/90–12/91) AAAA
AAAA
AAAA

Figure 2-14.  Assessing the Impact of Cleanroom on Product

Again, even though the change might result in the achievement of the original goal, other
parameters must be analyzed to ensure that the full impact of the change is understood. If the
assessment of Cleanroom showed that the goal of improved reliability was met but other factors
suffered significantly (e.g., productivity drastically decreased and cost increased), the overall
assessment might not have been favorable. It might be totally acceptable to one organization to
increase cost significantly to achieve improved reliability; for another, the same circumstances
might be unacceptable. It is important to understand the full impact of any change within the
constraints of the specific organization.

Many other assessments have been performed within NASA. References 9 through 12 detail other
sample assessments involving Ada, object-oriented technology (OOT), software modularization,
and testing techniques, respectively.

Assessing is the second step of the improvement paradigm. Whether results are favorable or
unfavorable, each assessment must be followed by the third step, some form of packaging. The
next section describes the Packaging Phase.



19 SEL-95-102

2.2.3 Phase 3—Packaging

In the Packaging Phase, changes that have produced
satisfactory results and shown measurable improvement
are institutionalized and incorporated into the
mainstream of the organization. During this phase, the

analysts develop new models, standards, and training materials based on what has been learned
during the Assessing Phase. The products developed by the analysts are stored by the support
staff into a repository (i.e., an experience base) and are provided to the developers upon request.
Packaging typically includes standards, policies, and handbooks; training; and tools. For
methodologies or techniques that do not show any favorable impact during the Assessing Phase,
results must still be captured and archived (i.e., packaged) so the corporate memory is continually
enhanced. This packaging may include reports or papers that are maintained in the corporate
repository. The results of the packaging phase are fed back to those individuals involved with
baselining prior to the next related project or experiment. Thus a particular technology can be
assessed through multiple experiments, each one building on the packaged results of the previous
experiment(s).

Packaging requires a clear understanding of the impact of a specific technology on the software
process and products. The ultimate measure of success is, in general, an improved software
product. Therefore, institutionalization of change must be substantiated by reliable data on the
products resulting from the process. Standards, policies, process characteristics, and other
“packages” are most effective when they reflect empirically derived evaluations of technologies
and processes that are suitable and beneficial to the specific organization.

The major product of the packaging step is the organization’s standards, policies, and training
program. The software process must be developed to respond to the general needs of the
organization and is driven primarily by the experiences and needs of the developers. Thus, every
element of the standards need not have been assessed, but some rationale must exist for their
inclusion.

Examples 6 and 7 illustrate how the experiences from the previous assessments (Examples 4 and
5) may be (or have been) packaged.

Example 6:  Packaging Experiences With Inspections

Consider the example of inspections. In the Understanding Phase, the organization
characterized the cost to detect and fix defects. In the Assessing Phase, inspections were
introduced to increase software quality and to reduce cost by detecting defects early in the
life cycle. The organization then assessed the impact of inspections and determined that
the goals of the experiment had been achieved. In the Packaging Phase, the organization
needs to determine how to package its favorable experience with inspections, perhaps by
modifying its standards (e.g., development manual) to include inspections or to train its
personnel to effectively use inspections. Figure 2-15 depicts the example of inspections
with respect to the three-phase process improvement approach. Process changes occur,
assessments are made, and improvements are identified. Organizational standards then
need to be upgraded to reflect the improved process as part of the standard way of doing
business within the organization.

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA
AAA

UNDERSTANDING

ASSESSING

PACKAGINGITERATE

Goal



SEL-95-102 20

UNDERSTANDING

ASSESSING

PACKAGING

•  Refine training 
•  Revise development manual 
•  Incorporate inspections into  
  standard development process

• Introduce inspections, train personnel, use checklist forms, 
etc. 

• Assess impact  
  Hours to detect  
 and fix defect: 5 to 17  1.1 (detect) + 0.5 (fix) 

 Determine cost to detect and fix defects: 5 to 17 hours to detect and fix defect

TIME

ITERATE

GOAL 

(Find more defects and  
find them earlier)

Baseline With Inspections

• Assessment favorable; goal met

Figure 2-15.  Packaging Experiences With Inspections

Example 7:  Packaging Experiences With Cleanroom

Finally, consider the Cleanroom example. The goal of introducing Cleanroom was to
improve reliability without incurring a cost penalty. In the Understanding Phase, cost and
reliability rates were determined. In the Assessing Phase, the first Cleanroom experiment
was performed, and impressive gains were achieved in both reliability and productivity.
Experiences of this first experiment were packaged in the form of updated training
materials and a handbook detailing refined Cleanroom processes (Reference 13); these
products were then used on subsequent Cleanroom experiments.

The three steps of the improvement approach were repeated for additional Cleanroom
experiments. In the Understanding Phase, error and productivity rates from the
organizational baseline and the early Cleanroom experiment were established for use in
later comparisons. In the Assessing Phase, the results of the later experiments were
evaluated against both the baseline and early Cleanroom experiences. Experiences from
these later experiments were also incorporated into the tailored Cleanroom process
handbook and training materials. Some key Cleanroom concepts, such as focused
inspections and process training, have been packaged and infused into the standard
organizational process. Other aspects of Cleanroom are undergoing further analysis until
the cost differences exhibited in the larger project can be more fully explained. Figure 2-16
depicts the packaging of the experiences of the Cleanroom experiments with respect to the
process improvement approach.



21 SEL-95-102

• Introduce Cleanroom, train personnel 
• Assess impact (exp. = experiment) 
  Baseline  1st Exp.  2nd Exp.  3rd Exp.  Assessment 
 Reliability     7.0     4.3        3.3       6.0         Better 
 Productivity     26     40        2.6       20         Mixed 
• Assessment favorable for smaller project, mixed for largerUNDERSTANDING

ASSESSING

PACKAGING

• Refine training 
• Refine process handbook

• Determine reliability rates:  Baseline = 7.0 errors per KDLOC              First exp. = 4.3 errors per KDLOC 
• Determine productivity rates:  Baseline = 26 DLOC per person per day   First exp. = 40 DLOC per person per day

TIME

GOAL 
(Improve reliability)

ITERATE

Figure 2-16.  Packaging Experiences With Cleanroom

Even if later assessments of Cleanroom are favorable, the process change will not be
mandated immediately to every project. A significant change like Cleanroom would be
evolutionary, and additional projects would be identified as the experience base is
broadened. Experience has shown that significant process changes cannot be adopted or
mandated quickly; they must evolve. It is the task of the analysts and development
managers to jointly plan the evolutionary process change for changes as significant as
Cleanroom.

2.3 Domains for Software Process Improvement

This chapter has discussed the structure and three-phase approach needed for software process
improvement. The concept of software domain is also critical to process improvement. The
organization must know the scope to which process improvement is being applied. Is process
improvement being applied across the entire organization or to a specific subset such as a division
or department? Understanding domains is also important to facilitate sharing of experiences within
and across domains.

The software process improvement organization gathers, synthesizes, and packages experiences
from a particular domain for use within the same domain. Whatever the domain is, the
organization first develops an understanding of its processes and products. It then treats the
domain as the “whole world” for applying process change and assessing the impact of this
change. The results and lessons are then packaged, and the information is applied to ongoing and
subsequent efforts within that specific domain to improve the quality of the software being
produced. Transfer of information across domains may be achieved, especially when the domains
have similar characteristics. However, the primary goal is to improve software within the specific
domain.

Domain analysis, or domain definition, is usually described as the process of recognizing standard
concepts, functionalities, and architectural characteristics within a software development
application area. Domain definition is important to facilitate product reuse and improve both the
productivity and quality of the final products (Reference 14). Often domain analysis pertains
strictly to the reuse of code. For software process improvement, domain analysis is not limited to
any one type of artifact (i.e., code); it facilitates the reuse of all experience, including that
embodied in code. For software process improvement, the domain influences the breadth to which



SEL-95-102 22

analysis applies; it influences the scope of packaged results (e.g., standards, policies, training,
tools); and it strongly determines to what extent any information, experience, or data can be
shared and reused. Additionally, it dictates how large a software process improvement
organization can be.

No direct mechanism exists for defining domains or organizational characteristics. Historically,
the definition of a software domain has most often been associated with an organizational
structure: a single domain is either an entire organization (e.g., NASA) or a subset of an existing
organization (e.g., NASA field center, branch, division, project, department). Domains are not,
however, necessarily linked to organizational structures. They may be defined according to the
factors that characterize the development processes, technologies, products, constraints, goals,
and risks associated with the projects. Different classes of projects may exist within one
organization (e.g., real time versus non-real time, flight versus ground systems) that might be
treated as individual domains or together as a single domain. The development processes used and
the overall process improvement structure are most often defined by the management structure
that is in place.

Once domains are understood and identified, common processes, standards, and experience may
be shared with confidence by various software organizations (e.g., individual NASA projects or
field centers) within a broader organizational structure (e.g., the Agency as a whole). Because
organizations can share data, information, and lessons learned, they can improve faster and further
than they could in isolation.

Domains have no size or breadth limitations. For example, there is some commonality for “all of
NASA” to be considered one domain; there is more commonality for “all of Johnson Space
Center” to be considered one domain; and there are some differences between Johnson Space
Center and Langley Research Center potentially resulting in their being considered different
domains. The point is that any organization can be classified as one domain, but as the
organization becomes broken down into more specific and smaller elements, more parameters are
relevant to the more specific, smaller domains than the larger organizational domain. Figure 2-17
depicts some potential domains within NASA. Some domains might be tied to organizational
structures (e.g., individual field centers) while others might pertain to application domains (e.g.,
mission support software). Within any domain is the potential for subdomains to exist. For
example, the mission support software domain might be broken down further into ground support
software, flight software, and scientific software.

Reference 14 describes activities to date in analyzing and defining NASA domains for the reuse
and sharing of experience.

The baseline has been established (Phase 1—Understanding), change has been introduced and
improvements identified (Phase 2—Assessing), and the experiences have been packaged in a
reusable manner (Phase 3—Packaging). Now the experiences have to be shared and incorporated
throughout the organization. These experiences can be shared not only within specific domains,
but occasionally even across domains. But with whom? Determining the domain-specific
characteristics is necessary to identify who can share the information and experiences. For
example, standards are one form of packaged experiences. If standards are to be adopted across
domains, it is important to understand the characteristics those domains have in common.
Domain-specific characteristics need to be identified to tailor standards for the needs of a



23 SEL-95-102

particular domain. Like any form of packaged experiences, standards should evolve over time. To
what domains do the standards apply? Answering this question extracts current information from
the domains so that standards can be updated to reflect recent experiences.

DOMAIN: Mission Support DOMAIN: Administrative DOMAIN: Individual Field Center

DOMAIN: Flight  (e.g., Space Station, 

Shuttle flight software)

DOMAIN: Scientific [e.g., Earth 

Observing System (EOS)]

DOMAIN: (etc.)

DOMAIN: (etc.)

DOMAIN: (etc.)

DOMAIN: Goddard Space Flight Center

DOMAIN: Johnson Space Center

DOMAIN: Langley Research Center

DOMAIN: Marshall Space Flight Center

DOMAIN: Ground Support  [e.g., 

Deep Space Network (DSN), SEL]

DOMAIN: Information 

Resources Management 

(IRM)

DOMAIN:  NASA

DOMAIN: Jet Propulsion Laboratory

Figure 2-17.  Examples of Potential Domains Within NASA

Understanding domains and domain-specific and domain-independent characteristics is important
for sharing information and experiences. Without defining domains and understanding the
characteristics that make them similar to and different from others, the full benefits of sharing
experiences cannot be achieved.

2.4 Comparison of Two Software Process Improvement Approaches

This section addresses the unique aspects of NASA’s software process improvement approach by
comparing it with another particular approach, the Software Engineering Institute’s (SEI’s)
Capability Maturity Model (CMM) (Reference 15). Both approaches share the underlying
principle of continual, sustained software process improvement.

As discussed earlier, the NASA software process improvement framework consists of two
elements:

• An organizational structure (Section 2.1) consisting of developers, analysts, and a
support staff

• A three-phase approach to process improvement (Section 2.2, Figure 2-2), that is, the
continual understanding, assessing, and packaging of organizational experiences

These two elements allow an organization to continually improve the quality of software products
and processes within a specific domain.

The key points of NASA’s process improvement approach are that

• Process improvement is driven by internal goals and local experiences.

• Each domain is dealt with in a different way according to its specificity.

• The environment is characterized according to organization-dependent measures.

• No assumptions are made about best practices in the process area.



SEL-95-102 24

• The ultimate measure of success is the improvement of the product or service delivered
by the organization.

The CMM is a widely accepted benchmark for software process excellence. It provides a
framework for grouping key software practices into five levels of maturity. A maturity level is an
evolutionary plateau on the path toward becoming a mature software organization. The five-level
model provides a defined sequence of steps for gradual improvement and prioritizes the actions
for improving software practice.

Within the CMM, an organization strives to mature to a continually improving process. To do so,
the organization must advance through the following maturity levels defined by the SEI:

• Level 1, Initial. The software process is characterized as ad hoc and, occasionally, even
chaotic. Few processes are defined, and success depends on the efforts of individuals.

• Level 2, Repeatable. Basic project management processes are established to track cost,
schedule, and functionality. The necessary process discipline is in place to repeat earlier
success in projects with similar applications.

• Level 3, Defined. The software process for both management and engineering activities
is documented, standardized, and integrated into an organization-wide software process.
All projects use a documented and approved version of the organization’s process for
developing and maintaining software.

• Level 4, Managed. Detailed measures of the software process and product quality are
collected. Both the process and products are quantitatively understood and controlled
using detailed measures.

• Level 5, Optimizing. Continual process improvement is enabled by quantitative feedback
from the process and from testing innovative ideas and technologies.

Figure 2-18 depicts the CMM process improvement paradigm; the NASA software process
improvement approach is also repeated in that figure.

Differences between the CMM and the three-phase NASA improvement approach are described
in four areas: the goals, initial baseline, initial analysis, and improvement approach.

1. Goals. Each organization must set goals for what is to be improved.

CMM: A generalized, domain-independent goal focuses on process. Every organization
strives to improve the software process and, ultimately, evolve to a continually
improving, optimizing process (Maturity Level 5). Organization A and Organization B
both try to improve their processes and become Level 5 organizations. In progressing to
higher levels, organizations expect to reduce risk and generate better products.

NASA: Organizations focus on improving products. Specific goals, however, vary from
organization to organization. Organization A may attempt to improve reliability by
decreasing error rates. Organization B may strive to decrease the development cycle
time. Goals are domain dependent. Within the framework of the CMM, organizations
using the NASA approach may progress to higher maturity levels and eventually become
a Level 5.



25 SEL-95-102

The CMM goal is domain independent and generalized. The CMM focuses on
improving the software process. NASA goals vary from organization to organization,
that is, they are domain dependent. The underlying goal of the NASA approach,
however, is to improve the software product.

CMM Process Improvement Paradigm NASA Software Process Improvement 
Paradigm

Improvement 
goal

Capture improved 
techniques as a part of 
the modified processASSESSING

PACKAGING

Determine the impact of a change

ITERATE

UNDERSTANDING

Build a baseline of process and products

Continual improvement over time

Con
tin

uo
us

ly 

im
pr

ov
ing

Sta
nd

ar
d,

  

co
ns

ist
en

t

Pre
dic

ta
ble

Disc
ipl

ine
d

5–OPTIMIZING
Change management, 
defect prevention

1–INITIAL

Ad 
ho

c

2–REPEATABLE
Basic project management

3–DEFINED
Documented systems, 
training

4–MANAGED
Detailed measurement

Individual efforts

Figure 2-18.  CMM and NASA Software Process Improvement Paradigms

2. Initial Baseline. Each organization must establish a basic understanding (baseline) of its
current software product and process.

CMM: Baselining is achieved by performing an assessment of the organization’s process.
This assessment is made against well-established criteria, and the organization is
baselined at a certain maturity level. These criteria enable comparisons across domains
because each organization is assessed against the same criteria. The same elements are
examined for every organization: e.g., Does it have good standards? What is its training
program like? How is its measurement program conducted? Based on the examination of
these criteria, the organization is baselined at some maturity level.

NASA: Baselining involves understanding the process and product of each individual
organization. This baseline is domain dependent. Unlike the CMM, no common yardstick
exists enabling comparison across domains. Some factors need to be characterized
(baselined) by all organizations, such as how much software exists, what process is
followed, what standards are used, what is the distribution of effort across life-cycle
phases. Other factors of interest depend on the goals of the organization. Organization
A, for example, would want to baseline its error rates, whereas Organization B needs to
determine its development cycle time.

The CMM baseline is process based and established against a common yardstick. The
NASA baseline is domain dependent and is both process and product based.

3. Initial Analysis. Changes are introduced to make some improvement. An analysis
(assessment) of the change must be made to determine if improvement has occurred.



SEL-95-102 26

CMM: Assessment of change is accomplished by reassessing the process. An
organization is baselined at one level, makes changes to try to attain a higher level, and is
then reassessed to determine if it has progressed to another level. Success is measured by
process change. The ultimate success is changing the process until it continually
improves. The organization then achieves the highest maturity level rating, a Level 5.
The measure of success is domain independent, because all organizations are measured
against the same criteria (i.e., “a common yardstick”).

NASA: Assessment of change is domain dependent. An improvement goal is set, change
to the process made, change to the process and product examined and verified, and the
effect of change evaluated against the original goal. Success is measured by product
improvement and is determined based on the goals of the individual organization. The
organization attempting to improve its reliability would institute a change, such as the
Cleanroom process, to try to reduce its error rates. It would then assess the result of the
experiment based on its original goals.

CMM analyses and assessments are based on its common yardstick. NASA analyses and
assessments are domain dependent, and are based on goals defined by the individual
organization.

4. Improvement Approach. Approaches to improvement are defined and driven by
different factors.

CMM: Changes made to the organization’s process are driven by the CMM common
yardstick. If an organization is baselined at some level, it will change elements necessary
to get to the next maturity level. If an improved measurement program is needed to
advance to another maturity level, the organization will focus on changing its
measurement program to meet the CMM’s criteria. The improvement approach is solely
process based. The CMM’s common yardstick enables a common roadmap toward
continual improvement.

NASA: Organizational experiences and goals drive change. Changes to the process are
made in an attempt to improve the product. Each domain must identify the most
appropriate process changes to achieve its product goals.

The CMM’s common yardstick drives change; its improvement approach is process
based. NASA’s organizational experiences and goals drive change; its improvement
approach is product based.

Table 2-3 summarizes the differences between these two process improvement approaches.

Despite their differences, both approaches suggest that every software organization should deploy
a program for the continual, sustained improvement of the overall quality of its products and
processes. The main difference is that, whereas the typical process improvement programs are
based on the assumption that improvements to the software process maturity will eventually elicit
improvements to the product quality, NASA’s software process improvement approach ultimately
focuses on improvement in the product and service quality, although achieved through process
improvements.



27 SEL-95-102

Table 2-3.  The NASA Software Process Improvement Approach Versus the CMM

Area NASA Approach CMM Approach

Goals Focus on improving product

Goals vary across organizations

Domain dependent

Success = better product; specific
measures of success vary from
organization to organization

Focus on improving process

Generalized goal (improve process, get to
Level 5)

Domain independent

Success = better process and higher
level; common measure of success

Initial
Baseline

Understand process and product Perform assessment of process

Common yardstick is basis for initial
baseline (what is the maturity level?)

Initial
Analysis

Change process to improve product,
reassess process and product

Organization specific, no way to compare
across organizations

Change process to advance to a higher
level, reassess process (what is the
maturity level now?)

Can compare across organizations

Improvement
Approach

Product based

Organizational experience and goals
drive change

Process based

Common yardstick drives change

The NASA approach assumes that every development organization must first understand its
process, products, software characteristics, and goals before selecting the set of changes that are
meant to support software process improvement. The underlying principle is that “not all software
is the same.” An organization must understand its software business before determining that
change must be made, and any change must be driven and guided by experience, not by a set of
generalized practices. There indeed may be generalized process concepts, but the essentials of any
process guiding development and process change must be driven by the knowledge of the
development organization.

The CMM can be viewed as a top-down approach with a generalized set of practices, whereas the
NASA approach is bottom-up with practices specific to individual organizations depending on
their product improvement goals. Neither approach can be effective if used in isolation. The
CMM approach requires awareness of the product changes, and the NASA approach requires use
of some model for selecting the process changes aimed at improving product characteristics. Both
the top-down and bottom-up approaches play an important role in the goal of improving the
software business. For NASA, the CMM defines an excellent model for assessing process and for
selecting potential process changes that can support the goal of sustained improvement.

The CMM approach is designed as a framework that organizations may use to better understand
their software process and to provide guidance toward lower risk in the way software is
developed. It provides an excellent procedure for identifying potentially beneficial additions to the
organization’s software business practices. NASA capitalizes on this approach to guide efforts at
characterizing the way software is developed and in what areas NASA may look for
improvements in consistence and commonality. By complementing the CMM with specific



SEL-95-102 28

approaches to assessing goals, products, and product attributes, a complete and effective program
is defined.

Each of the approaches poses similar difficulties in defining exactly the scope or size of the local
organization, but some judgment must be applied to determine what this single entity can be. The
smaller the organization, the more detailed the process definition, as well as the process
improvement definition, can be.



29 SEL-95-102

Chapter 3.  Structure and Operation of the Software
Process Improvement Organization

Chapter Highlights

COMPONENTS

• Developers
• Analysts
• Support Staff

DEVELOPERS

• Produce software
• Provide data
• Participate in studies
• Use experience packages

ANALYSTS

• Design studies
• Analyze project data
• Package results

SUPPORT STAFF

• Process data
• Maintain repository



SEL-95-102 30

his chapter takes a closer look at the structure of the software process
improvement organization, its individual components, the resources they require, and their
functions and presents details regarding the operation of the software process

improvement program. It assumes the structure is already in place.

The chapter then describes the responsibilities, activities, and interaction of the developers,
analysts, and support staff, detailing how each of these groups performs the activities associated
with its process improvement responsibilities and how each operates on a daily basis for each of
the following time periods associated with development projects: before or at project start, during
the project, at or after project completion.

Many of the process-improvement-related responsibilities of these three organizational elements
are associated with software measurement. Some details on measurement-related activities will be
presented in this chapter; additional guidance on establishing, using, and maintaining a software
measurement program can be found in Reference 16.

3.1 Components of the NASA Software Process Improvement
Organization

Software Process Improvement Organization is a designation that refers to the whole
organizational infrastructure whose components are the

• Developers, consisting of the developers and maintainers, whose primary objective is to
produce software on time and within budget. Additionally, they must provide
development information to the analysts. They receive experience packages from the
analysts (e.g., standards, models) and reuse these packages in their activities.

• Analysts, whose focus and priority are to support project development by analyzing
experience drawn from people, process, documents, and tools. They synthesize and
package this information in the form of policies, standards, training materials, and, in
general, models of the product and of the process (both formal and informal).

• Support staff, who serve as the focal point for all the archived information produced and
used within the software process improvement organization. Additionally, this
component validates and qualifies the data and the other information, making sure that
the organization’s information repository conforms to the needs of the analysts and
developers.

Figure 3-1 shows the three components of the software process improvement organization and
highlights some activities they perform.

The analysts and support staff exist solely because of the software process improvement activities;
therefore, all their activities are related to software process improvement. However, process
improvement activities are only a portion of the developers’ responsibilities. Some of these
activities are already part of the operation of the developers in a traditional environment, but some
new activities have been added and some old ones changed. Table 3-1 presents a synopsis of the
development activities pertaining to software process improvement, highlighting what has
changed and what remains the same. The remainder of this chapter addresses only those activities
of the developers associated with software process improvement. It does not discuss any of the

T



31 SEL-95-102

regular activities associated with developing software unless they are relevant to the process
improvement activities.

• Process data  
• Manage repository

SUPPORT STAFF

DEVELOPERS

• Develop/maintain software 
• Participate in studies 
• Provide information  
  (to analysts) 
• Reuse models and processes

ANALYSTS

• Design experiments 
• Analyze information 
• Package experience 
  (develop models, 
  processes, baselines)

Figure 3-1.  Activities of the Software Process Improvement Organization

Table 3-1.  Activities of the Developers

Development
Organization
Component Unchanged Activities Changed Activities

Developers and
Maintainers

Produce software on time and within
budget (primary goal)

Interact with analysts for training,
goal setting, and feedback

Management Plan and control activities

Use management tools (e.g., earned
value)

Act within management chain of
command

Set up interfaces with analysts and
support staff

Software Process Adhere to process defined for
development and maintenance

Interact with analysts for training

Use tailored processes

Use analyst-developed standards

Products Output Generate software and related
documentation

Document lessons learned

Provide data to analysts

Provide products, processes, and
lessons learned to analysts

Tables 3-2 through 3-4 present an overview of the process improvement activities and the
information exchanged between these groups during each time period. The remainder of this
chapter provides details relating to these activities.



SEL-95-102 32

Table 3-2.  Activities Before or at Project Start

From Developers To Analysts

• Understanding of project needs

From Analysts To Developers

• Experiment goals

• Understanding of changes to the process

• Training, as needed

• Tailored processes

• Refined process models

• Experience-based policies and standards

• Pertinent tools

• Identification of project representative

From Developers To Support Staff

(none)

From Support Staff To Developers

• Clear descriptions of data to be provided

• Clear and precise definition of terms

• Identification of who is responsible for providing which
data

• Understanding of when and to whom data are to be
provided

From Analysts To Support Staff

• Set of forms to be used

• Measures to be collected

• Modified or technology-specific forms,
as needed

• Report formats

• Reporting procedures

From Support Staff To Analysts

(none)



33 SEL-95-102

Table 3-3.  Activities During the Project

From Developers To Analysts

• Suggestions for process refinement

• Project status and feedback at periodic
meetings

From Analysts To Developers

• Processes and standards

• Models and relationships for use in estimation
and planning

• Help in applying modified process

• Training, as needed

• Periodic status on the experiment, usually
through the project representative

From Developers To Support Staff

• Updated information (e.g., personnel changes)

• Data (through data collection forms)

• Feedback on data collection procedures

• Documents and data for archival

From Support Staff To Developers

• Reminders when forms are not submitted

• Incorrect or incomplete forms

• Periodic reports (usually to the manager)

• Archived documents and reports, as needed

From Analysts To Support Staff

• Modified report formats

• Modified reporting procedures

• Documents, technical reports and training
materials for archival

From Support Staff To Analysts

• Raw data from the repository

• Periodic reports on the project

• Problem reports on data collection procedures

• Archived documents and reports, as needed

Table 3-4.  Activities At or After Project Completion

From Developers To Analysts

• Final lessons learned at a project debriefing

• Subjective assessment of the experiment

From Analysts To Developers

• Feedback on experiment results

From Developers To Support Staff

• Project data, specifically for close-out

• Documents and reports for archival

• Feedback on data collection process

From Support Staff To Developers

• Final reports on the project

• Archived documents and reports, as needed

From Analysts To Support Staff

• Documents and reports for archival

• Feedback on data collection process

From Support Staff To Analysts

• Raw data from the repository

• Final reports on the project

• Archived documents and reports, as needed



SEL-95-102 34

3.2 Developers

3.2.1 Overview

The developers comprise the largest element of the overall organization. They are dedicated to the
development or support of software and may be involved with one or more projects. Their
activities define the application domain for the software process improvement program, which is
the “whole world” as far as the software process improvement organization is concerned.

The traditional role of the developers is not substantially changed by the fact that it is embedded
in the software process improvement organization. The developers are the most critical part of the
organization and absorb the majority of its resources. The developers are given a problem and
have to solve it in the best possible way, within given time and budget constraints. As far as
development and management activities are concerned, the major difference between a traditional
environment and a software process improvement environment is the continual and consistent use
of both the data collected in previous projects and models derived from those data by the analysts.
In other words, data collection and analysis are emphasized more than in traditional environments.

The developers’ management structure is not changed or affected by the software process
improvement program. The analysts have no management responsibility or authority over the
developers. However, to support the concept, the development management structure may need
to take on some additional responsibilities. These could include interfacing with the other
elements or utilizing specific training and policies provided by the analysts.

3.2.2 Resources

When the developers become part of a process improvement organization, their staffing is
generally left unchanged. Some activities that may previously have been the developers’
responsibility (e.g., the development of standards and training courses) are transferred to the
analysts. Therefore, some project resources may be allocated to the analysts, possibly on a part-
time basis.

The management of the development organization is not affected by the software process
improvement program, but higher levels of management probably will be shared with the analysts
and support staff. Developers are not subordinated to the analysts. The amount of management
functions should not increase for the developers.

The developers’ budget is not affected by the software process improvement program. The
additional functions, which include interfacing with the analysts, providing project development
data, and using models and processes developed by the analysts, should be carried out with no
significant impact to the overall project cost. As an upper limit on cost impact, some
organizations may assume that there is a 1 or 2 percent overhead determined by the additional
training, meetings, and data gathering activities, but experience has shown that the additional
overhead can be absorbed by the development budget. The developers’ resources should not be
appreciably impacted. Ideally, it would be beneficial to allocate an additional 1 to 2 percent to the
developers to compensate for expenses related to activities such as meetings, data gathering, and
training.



35 SEL-95-102

3.2.3 Activities

The primary responsibility of the developers is to develop or maintain software. They must not be
burdened with software process improvement activities; therefore, their responsibilities for
software process improvement are minimal. The development manager, however, is involved with
some analysis activities as detailed in the remainder of this subsection.

The interface between developers and their customers is unchanged, although the use of data,
defined models, and other products made available by the analysts will ease some aspects of this
relationship. Those data and models should make the whole development process more controlled
and predictable, even from the customer’s point of view.

The developers perform the following functions to support software process improvement:

• Provide data

• Participate in studies

• Use experience packages

They also may be asked occasionally to meet with the analysts for feedback sessions to verify
preliminary data analysis, for interviews to gather additional project characteristics data or
subjective information, or for training sessions to reinforce the proper use of specific processes
being applied by the developers.

Project personnel (developers) are responsible for providing project data. To do so, they complete
data forms and submit them on a regular basis as agreed to by the managers and analysts. The
forms are delivered to a specified, convenient location or handed to a designated individual. The
developers simply provide the data; they assume no responsibility for analyzing them.

The developers may be asked to participate in a study of an experimental use of some process,
technique, tool, or model that is not part of the organization’s standard process. For projects
undergoing significant process changes, the developers will need to attend briefings or training
sessions on using the new process. At various stages in the experiment, the developers need to
provide their insight regarding the value and relevance of interim results, the degree of success
derived from the innovation, and the difficulties experienced in applying the new process. For the
majority of projects, the only training needed is on data reporting agreements and the use of data
collection forms.

Though the organizational experience is drawn directly from the developers, it is packaged by the
analysts. The developers must then use these experience packages as part of their standard
development process. Developers continually use analyst-provided packages, such as models,
standards, handbooks, and training. Developers participating in experiments also use process
models and processes refined by the analysts.

In support of these functions, the developers perform distinct activities corresponding to each
phase of the project.

Before or at the start of a project, the developers and the development manager perform several
activities to support process improvement. Together with the analysts, the development manager

• Defines the experiment associated with the project.



SEL-95-102 36

• Identifies measures to be collected.

• Identifies training needed for developers.

• Determines the experiment goals.

• Determines forms to be used to collect appropriate data.

• Decides what is to be altered for the project.

• Determines process and standards to be applied.

The manager provides project start-up information such as project name, preliminary start and
phase dates, and estimates, to the support staff. They also provide the names of project personnel
who will be supplying data. At this stage, the developers (technical staff) receive training, as
needed, and instructions on data collection procedures.

For each project, an analyst is designated as a project representative to act as liaison between that
development effort and the analysis organization. It is during this time frame that the analysis
organization identifies the project representative. Most interaction between the developers and
analysts takes place through this project representative.

During the project, the developers perform several activities to support process improvement.
The developers (both management and technical staff) continually provide project data by
completing data collection forms and submitting them (manually or electronically) to designated
locations. The lead developer collects the forms from the development team and quality assures
them to ensure that the numbers add up, the dates are correct, and the forms are filled in properly.
The forms are then submitted to the support staff for processing. Project managers are responsible
for periodically re-estimating size, schedule, and related information through appropriate data
collection forms.

Throughout the project, developers and analysts interact to clarify process changes and provide
feedback on the experiment. Most interaction between the developers and analysts takes place
through the assigned project representative.

At or after project completion, the developers perform several activities to support process
improvement. They provide project close-out data, including final system statistics (size, phase
dates, etc.) and subjective information that might help characterize the problem, process,
environment, resources, and product. The developers and analysts jointly generate a lessons-
learned document. The majority of this document comes from the developers and focuses on the
development effort as a whole, not specifically on the process improvement activities (the analysts
capture project-specific lessons learned focusing on the process improvement activities and
experiment(s) performed). The lessons-learned document is generated within 1 month of project
completion.



37 SEL-95-102

3.3 Analysts

3.3.1 Overview

Because the analysis organization exists solely to support software process improvement, all the
analysts’ activities directly pertain to the organization’s software process improvement program.
The analysts are responsible for extracting information from the developers and then analyzing,
synthesizing, and packaging the experience into reusable products for ongoing and future
development and maintenance efforts. Their goal is the synthesis and packaging of reusable
experience in the form of models, standards and policies, training materials, and lessons learned.
The development of this information is based completely on lessons and data from past projects.
The information is made available for use in the current projects of the same application domain.
The analysis organization may be logical rather than physical, meaning that

• Personnel may be allocated to the analysts on a part-time basis.

• The analysts have their own levels of management but, as part of a larger parent
organization, typically share the next higher level management with the developers.

• The analysts may include external consultants and researchers.

Most of the analysts’ activities consist of defining and analyzing the information provided by the
developers and feeding back the analyzed information to the developers. Because the information
is contained in the experience base, or repository, the analysts must also regularly interact with the
support staff to make sure that the information is appropriately collected, validated, and stored.

When compared with a traditional environment, the analysts’ activities are new ones. Some
activities, such as the development of standards, the development of training, and the production
of models, may have existed but were previously carried out by the developers. Under a process
improvement program, these activities would become the responsibility of the analysts.

3.3.2 Resources

Ideally, the staff of the analysis organization should include some experienced developers who
have good field experience on processes and technologies used in the development organization,
and researchers who are experienced in applying and assessing new concepts of software
engineering technology. Given the particular role of the analysts, basic training in software
engineering principles and techniques is desirable. The staff could also include experienced
developers allocated to the analysis organization on a part-time or temporary basis.

The analysts have their own management, but higher levels of management are shared with the
developers and support staff.

The analysts’ budget and staffing levels are proportional to the budget and the size of the
development organizations supported. On the basis of NASA experiences in typical organizations
(where the development organization ranges in size from 100 to 500 people), the analysis element
is typically between 5 and 10 percent of the overall size of the development organization (see the
example in Figure 3-2).



SEL-95-102 38

ANALYSTS

STAFF: 

FUNCTION:

10–20 people 

• Analyze data 
• Build models 
• Develop standards 
• Develop training 
• Design experiments

SUPPORT STAFF

STAFF: 

FUNCTION:

2–5 people 

• Process/QA data 
• Maintain database 
• Operate library

DEVELOPERS

STAFF: 

FUNCTION: 

ACTIVE PROJECTS:

200–250 people 

Develop or maintain software 

6–10 (concurrent)

Project 1

Project 2

Project 3

AVERAGE PROJECT SIZE: 
 150–200 KLOC 
 
PROJECT STAFF SIZE: 
 15–25 people

Project n

. 

. 
. 
. 

Figure 3-2.  Sample Process Improvement Organization

3.3.3 Activities

The heaviest burden of software process improvement activity falls on the analysts. They are
entirely responsible for cultivating continual software process improvement within the
organization. The primary operational responsibilities of the analysts are to

• Design studies

• Analyze project data

• Package results

The activities of the analysts can be associated with several development organizations or with
several segments of the same development organization. All activities of the analysts are
associated with software process improvement.

The analysts must first design studies supporting the organization’s process improvement goals.
They identify candidate process changes that address the organization’s needs and that appear
likely to improve the resultant product by reviewing literature and consulting developers who
have insight into the problem area. Each development project is considered an experiment (i.e., a
study of software engineering processes), and an experiment plan is written for each. These
experiments can range in scope from validation of the current organizational models to controlled
investigations of the impact of introducing a new methodology and involve developers as well as
analysts. In addition to these individual experiment plans, the analysts (usually a lead analyst)
work closely with the organization’s managers to prepare higher level organizational plans
coordinating the process improvement activities across all projects to ensure that all high-priority
organizational goals are being addressed. They identify data to be collected and organize this
collection based on the characteristics of the organization that is experimenting with the selected
technologies.



39 SEL-95-102

The analysts are responsible for analyzing project data to develop and maintain organizational
models (e.g., cost estimation models, resource models, error profiles) and to determine the impact
of new technologies, such as object-oriented design, on the organization. They develop and
update standards that incorporate into the normal organizational procedures the new
technologies, the processes that are associated with them, and the models that support their use.
They develop tailoring guidelines for the standards. They also develop training materials and
programs to institutionalize the learning and use of new technologies.

Finally, the analysts must package the results and provide the derived information to the
developers in useful forms, such as guidebooks, tools, and training courses. They are responsible
for developing standards for the organization’s process based on the experiences of that
organization’s developers. The analysts train the developers in activities such as using models and
relationships that support the new technologies, planning and estimating using those models,
controlling the execution of the new and updated processes, and tailoring mechanisms for
standards. They fine-tune models and relationships to project-specific characteristics, possibly
using parameters already provided with the models. They also provide feedback to the developers
based on information obtained from them. This element of the analysts’ responsibilities is a critical
one. Information, results, and progress must be continually fed back to the developers. Ultimately,
all items packaged by the analysts are for the developers’ use.

In support of these functions, the analysts perform distinct activities corresponding to each phase
of the project.

Before or at the start of a project, the analysts perform several process improvement activities.
For each project, an analyst must be designated as a project representative to act as liaison
between that development effort and the analysis organization. The project representative
produces an experiment plan that defines the goals and approach of the experiment, provides a
brief overview of the development effort, and describes the data to be collected. The analysts
work with the development manager to define the experiment and to determine what is needed
from and by the developers. They provide models and relationships for use in estimation and
planning to the development manager. Process-specific training is given to the developers.

During the project, the analysts perform several process improvement activities. Throughout the
project, they continually extract and analyze project information stored in the database, refine
processes as needed based on feedback from the developers, and support the developers in
applying the experience packages and refined processes. They continually interact with the
support staff to ensure that data collection, processing, and reporting run smoothly.

At or after project completion, the analysts perform several process improvement activities.

For individual experiments, the analysts

• Extract and analyze project information stored in the database.

• Assess the experiment results.

• Package results (e.g., technical report, updated process guidebook).

• Jointly with the developers, generate a lessons-learned document. The developers
provide most of this document, focusing on the development effort as a whole rather



SEL-95-102 40

than specifically on the process improvement activities. The analysts (usually the project
representative) capture project-specific lessons learned focusing on the process
improvement activities and experiment(s) performed. This document is generated within
1 month of project completion.

Based on results of multiple experiments across many projects, the analysts

• Tailor standards and guidebooks.

• Assess models.

• Update models, as necessary.

3.4 Support Staff

3.4.1 Overview

All support staff activities are directly related to the organization’s software process improvement
program. They are primarily responsible for processing data, including collecting, quality assuring,
managing, and archiving all project data and for maintaining the information repository, which
involves maintaining the organization’s experience base. The actual experience base, or repository
of information, consists of two basic components:

• Projects database. This component is usually a relational database, with associated data
entry and data reporting functions. It contains the historical data from the projects, such
as cost, schedule, and errors. A sample structure of such a database can be seen in
Reference 17.

• Library. This second component is a document management and production
infrastructure, possibly but not necessarily automated, that supports storage, retrieval,
and distribution of project-related items (data collection forms, project-related
documentation) and analyst-produced experience packages such as models (usually
documented in reports and guidebooks), standards, policies, handbooks and guidebooks,
and reports.

3.4.2 Resources

The support staff require a different set of skills. They are not necessarily experienced in software
engineering, but they have practical experience with the tools used in the experience base (e.g.,
database and document management systems).

The support staff have their own management but, like the analysts, share the next level of
management with the developers.

The support staff size and budget are smaller than those of the analysts. Based on experience, a
reasonable ratio for a staff supporting environments of 200 to 500 developers is half of the overall
budget of the analysis organization. These figures reflect a structure similar to the one presented
in Figure 3-2. A reasonable estimate for the cost of this function is 5 percent of the development
cost. For much larger organizations, experience has shown that the percentage decreases such
that a support staff of 20 can carry out this function for an organization of several thousand.



41 SEL-95-102

3.4.3 Activities

The support staff exist solely for software process improvement; therefore, all their
responsibilities are directly related to software process improvement within an organization. The
primary operational responsibilities of the support staff are independent of specific projects. They
are to

• Process data

• Maintain the information repository

The activities of the support staff are to

The support staff process, i.e., collect, store, quality assure, summarize, and export, the
organization’s project data. They manage the information provided by the developers to ensure
that it is complete, consistent, and of adequate quality so the analysts can use it to develop the
models and gain a general understanding of the software process. The support staff typically use a
commercially available relational database management system (RDBMS) to store the project
data. The support staff assign a database administrator (DBA) for the organization. The DBA
coordinates data collection activities, gets appropriate information from the analysts (e.g., what is
being monitored for specific projects), and serves as the interface to the developers. To ensure
quality, the support staff monitor the regularity and completeness of the data collection process.
They apply the data collection procedures provided by the analysts and report any problems
encountered in their execution. They also manage the data collection forms, making sure that they
are available in the current format to whoever needs them. As data become available, the support
staff enter them into the projects database. They make sure that the data are formally consistent
with the data collection standards. They also archive documents, technical reports, and other
project-related information, making sure that the current versions are available and that the
outdated versions are appropriately handled. The support staff are responsible for getting data
from two sources:

• Directly from project personnel. Most project data are gathered directly from the
developers through data collection forms. The support staff must make the data
collection process as painless as possible for the developers. They must ensure that an
interface is clearly established between themselves and the developers so that the
developers can easily provide the project data. Developers must understand who is
responsible for collecting and furnishing project data, how frequently the data will be
collected, which portions of the software life cycle will be reflected, and what type of
personnel (management, technical, or administrative) will be included. The support staff
are responsible for managing the data collection forms; they must ensure that the forms
are available to those who need them, clearly indicate where they are to be deposited,
and promptly collect and process them. They must ensure that there is a consistent
understanding of the software measurement terms and concepts and must supply
concise, clear definitions to the developers. The analysts are responsible for writing
definitions that are consistent with organizational goals and locally understood ideas;
however, the support staff are responsible for furnishing the definitions to the data
providers (the developers).



SEL-95-102 42

• Automatically from the project. Some information, such as source code growth rate or
computer resources usage, is monitored and gathered electronically, without direct input
from the developers. The support staff develop, run, and maintain procedures for this
automatic data collection.

The support staff are responsible for maintaining the information repository, which includes
maintaining, archiving, and distributing all output from the analysts such as archived reports,
standards, training materials, and experimental studies. They are responsible for maintaining both
components of the repository: the projects database and the library.

THE PROJECTS DATABASE. After collecting the data, the support staff store them in an on-
line database, preferably a commercially available RDBMS. The quality of the stored data must
then be considered. The support staff should quality assure the data using a two-step process:

1. Verify the source data. Support staff track discrepancies to the source and correct them.
This step includes checking that the data forms have been submitted and are complete
(i.e., all required values are provided); values are of the specified type (e.g., numeric
fields do not contain non-number values); values are within specified ranges (e.g.,
number of hours of effort per day per person is never greater than 24); and values are
reported on the prescribed schedule.

2. Verify the data in the database. After the data are entered into the database, support
staff perform a second check to verify that the entries match the source value.

The support staff maintain and operate the database. They develop, execute, and maintain
procedures for the operation of the database including start-up, shut-down, backups, restorations,
reorganizations, and reconfigurations. Occasionally, changes to the data collection process will be
introduced. The support staff are responsible for evaluating the effect of such changes on the
database design, supporting application software, data collection procedures, and documentation.
They must implement the changes and ensure that earlier data are not rendered obsolete or
comparisons invalidated.

The support staff produce and distribute reports and data summaries to users in all of the software
process improvement program’s organizational components. Many reports are generated on a
regular schedule. These include single project summaries that focus on a particular data type and
multiple project roll-ups that provide high-level statistics facilitating project-to-project
comparisons. These reports may be distributed to developers to provide feedback on project
measures. Analysts also use these reports to identify projects and data to be used in studies and
model generation. The support staff may also generate reports, such as low-level data dumps from
the data verification process, on an ad hoc, as requested basis.

Occasionally the support staff are also responsible for preparing and exporting raw data to
external organizations. Before sending the actual data, they need to sanitize them to preserve the
confidentiality of data providers (e.g., removing names of individuals and substituting generic
project names for actual ones).

THE LIBRARY. The support staff maintain the organization’s library of products supplied by
both developers (e.g., lessons learned) and analysts (e.g., experiment plans, technical reports,
standards, policies, and handbooks). They organize and maintain a catalog of the library’s



43 SEL-95-102

contents, archive documents and technical reports, ensure that current versions of archived
documents and reports are available, remove outdated versions from the library, and prepare and
execute document reproduction procedures.

In support of these functions, the support staff perform distinct activities corresponding to each
phase of the project.

Before or at project start, the support staff perform several activities to support process im-
provement in addition to the project-independent activities (i.e., processing the data and
maintaining the information repository). From the analysts, the support staff get the appropriate
forms to be used, measures to be collected, and any information or instructions specific to that
project. The support staff must ensure that communications have been established with the
developers and that the data collection procedures are clearly understood. The DBA typically
meets with the project leader to ensure that the developers understand what is expected of them
and that the support staff understand the particular project and any unique changes being applied.
The support staff obtain basic project information from the development manager including names
of project personnel and initial estimates.

During the project, the support staff perform several activities to support process improvement in
addition to the project-independent activities (i.e., processing the data and maintaining the
information repository). Throughout the project, they interact with both developers and analysts
and provide information (data, documents, reports, etc.) on a regular basis, including responding
to special requests for information. They must also ensure the smooth operation of the
organization’s information repository.

At or after project completion, the support staff perform several activities to support process
improvement in addition to the project-independent activities (i.e., processing the data and
maintaining the information repository). They collect and process project close-out data and
generate final reports. They process documents and reports for archival and respond to requests
for information.

3.5 Summary

The success of the software process improvement program depends on the smooth operation of
its components. The program, as a whole, is only as effective as the individual components. Aided
by the support staff, the analysts are responsible for facilitating software process improvement
within the organization. The developers are the source of experience and the cornerstone of the
entire software process improvement program. Every effort should be taken to extract their
experience in an unobtrusive manner. When the program is operating effectively, its activities are
viewed by developers as the standard way of doing business, not as some “necessary evil.” All
members of the organization reap the benefits and become willing to support and advocate the
process improvement program.





45 SEL-95-102

Chapter 4.  Implementation of the Software Process
Improvement Program

Chapter Highlights

OBTAIN COMMITMENT

• Gain support of key individuals
• Designate resources
• Focus on first products
• Produce software process

improvement plan

ESTABLISH STRUCTURE

• Determine affected elements of
development organization

• Establish analysis organization
• Establish support staff

ESTABLISH PROCESS

• Define data to be collected
• Define terminology to be used
• Define data collection, quality

assurance, and archival procedures
• Define how to capture development

lessons learned

PRODUCE BASELINE

• Capture snapshot of
organization’s environment,
process, and product
characteristics

START  OPERATION

• Initiate normal day-to-day operations
of the software process
improvement organization



SEL-95-102 46

his chapter describes the five steps necessary to establish and implement a software
process improvement program:

1. Obtain commitment from the organization.

2. Establish the basic structure of the software process improvement organization.

3. Establish the process and operational concepts for the organizational elements.

4. Produce the organizational baseline.

5. Start operation of the software process improvement program.

The ideas behind all the steps of the implementation process pertain to the scope and focus of the
software process improvement program. The scope is delimited by a specific domain. The
implementors, that is, those responsible for establishing the software process improvement
program, should start with a small, but very reactive, initiative that represents limited overhead
and provides visible benefits. The opportunity for widening the scope to other domains and
organizations will exist if the original effort was mostly successful. The focus is the improvement
of software in a specific domain using lessons learned from experimentation with technologies in
real projects. The implementors should resist the temptation to introduce changes to the process
that, although making sense, are not in tune with the overall goals of the organization that were
set in the Understanding Phase after the baseline was established. The improvement must target
the areas where it is most needed.

Starting small is also important. Limiting the number of projects affected, restricting the portions
of the software life cycle to those with already-defined processes within the organization, and
limiting staff involvement to essential personnel will all help to minimize resistance from, and
impact on, managers and developers. The scope of the program will evolve, but the time to
increase the size of the program is after it has become successful.

4.1 Obtain Commitment

Obtaining commitment is crucial to the success of the software process improvement program. At
this point, the implementors need to

• Inform all levels in the organization about the organizational goals and the changes
implied by the software process improvement program.

• Obtain support from some key individuals.

• Prepare the ground for execution of the next steps.

The software process improvement program must be sold to the organization by showing its
practical benefits for everybody. In particular, the concept must be sold to the key decision-
making levels of the organization to obtain, and retain, their support during both implementation
and operation of the program.

T



47 SEL-95-102

The major action items included in this step are to

• Enlist an advocate. The ideal advocate is an experienced senior software engineer who
can dedicate at least half of his or her time to the software process improvement
activities. This person must have significant insight into all of the organization’s
development efforts and general activities because he or she will be responsible for
coordinating all the process improvement activities, making the final determination for
experiments to be performed and the projects to which they will be assigned.

• Increase awareness. Awareness must be raised with two key groups: the developers and
other support elements. The role and responsibilities of the developers must be clarified
because they are the drivers of the improvement process. Support groups, such as
Quality Assurance and Project Control, also must be made aware of the process
improvement activities because they will be heavily affected by the changes in the
organization and its standards.

• Secure management support. Management does not have to be a direct advocate of the
initiative but must be aware of it, understand its goals, and support it explicitly and
implicitly.

• Designate resources. The most important resource in the implementation of the
software process improvement program is staff time. Management must be aware that
the improvement program does not come free and must allocate enough resources to the
effort. Some experienced members of the development teams must be allocated, at least
part time, to software process improvement, because they are the current owners of the
experience that will be packaged. Resources and time must also be allocated for the
support staff.

• Focus on the first products. The goals of the process improvement program must be
clearly defined in terms of the

- Concept they implement

- Needs they are going to satisfy

- Expected baseline changes

- Impact on existing software policy

• Produce a software process improvement plan. This plan will define in an operational
way the role of the process improvement program by dealing with the following topics:

- Discussion of the concept (Why does the organization want to do this?)

- Outline of the program (Describe what it will and will not do.)

- Definition of the scope of the overall program (Who will it affect? Which types of
projects will participate?)

- Identification of measurable goals and drivers (What will be the measure of success?
How can adjustments be made?)



SEL-95-102 48

- Process description (How will changes be introduced? How will improvement be
managed? How will new technology be introduced?)

- Resources assigned to the tasks (Who? How much time? What will it cost?)

4.2 Establish Structure

The structure established in this step was outlined in Chapter 3. It consists of three components:
developers, analysts, and support staff. Based on the description of the components’ roles given in
Chapter 3, the major action items included in this step are to

• Define the scope of the development organization. Determine organizational units
involved (which projects? departments? functions?). Determine the software to be
included (what life-cycle phases will be addressed? what types/classes of software?).
Specify roles and responsibilities (and points of contact, when appropriate) for
interfacing with the analysts and support staff.

• Establish the analysis organization. Assign staff to the analysis organization, according
to the established criteria. Set the focus on some early products.

• Establish the support staff. Assign staff and other resources (e.g., space for physical
location) to the support organization according to the established criteria. Establish the
data collection, quality assurance, and other procedures necessary for the organization
to run efficiently. Determine tools to be used (e.g., RDBMS).

Figure 3-2 showed a sample process improvement organization. Figure 4-1 represents the same
organization but shows some additional details pertaining to the structure of that particular
organization.

DEVELOPERS

STAFF:  ~200 people (contractor and NASA) 

FUNCTION:  Develop and maintain flight  
       dynamics software 

• All operational support software 
 (no prototypes, no R&D) 

• From design through operations 

• Each project manager responsible for 
supporting process improvement activities

ANALYSTS

STAFF:  ~10–20 people from NASA/GSFC,  
 University of Maryland, and CSC 

PRODUCTS:   
 - Forms - Standards 
 - Models - Training 
 - Processes 

• From experiment plan through project closeout 

• Funding primarily from NASA

SUPPORT STAFF

STAFF:  4 people (2 data technicians, 2 developers) 

• Staff and repository occupy ~500 sq. ft.,  
 located in developers' space 

• Use commercial RDBMS (Oracle)

Figure 4-1.  Sample Process Improvement Organizational Structure



49 SEL-95-102

A critical issue throughout the execution of this step is the clear specification of what is being
done. At this stage, the tendency to broaden the scope is strong. The implementors must
remember that a clear definition of scope and products and a rigorous specification of and
compliance with the roles established at the beginning are the key to success. If adjustments need
to be made, they must be explicitly planned and motivated.

4.3 Establish Process

The purpose of this step is the definition of the operational concept and the development of the
necessary instruments for each component of the software process improvement organization.
The basic operation of the software process improvement program has been presented in
Chapter 3.

Based on that description of the operation, the major action items performed in this step are to

• Define what data will be collected and archived. What forms will be used?

• Define terminology to be used. Prepare a glossary defining terms commonly used and
describing how they are used (e.g., What is a line of code? What is an error?).

• Define how data will be collected, quality assured, and archived. Established detailed
data collection procedures. Define step-by-step timelines. What is the database
organization?

• Define how the development lessons will be captured. Define report formats.

The organization must find the best way of operating the process improvement program in its
specific context. It is not necessary to overplan and provide detailed specifications for the
operation of the program. The process will evolve as the organization learns from its own
experiences. Defining and documenting detailed data collection procedures is necessary, however,
to guarantee the integrity and completeness of the data.

4.4 Produce a Baseline

Producing a baseline is, perhaps, the most critical element in the software process improvement
approach. In this step, the organization captures a picture of itself as it exists at that time. The
baseline is a characterization of the organization’s software process and product. The baseline
should include insight into the following areas:

• How much software exists within the organization?

• What are the characteristics of the organization’s product?

• What are the characteristics of the organization’s process?

• What are the perceived strengths and weaknesses from selected relevant perspectives
(e.g., developers, customers and users, management)?

The instruments used in building a baseline include the usual data collection instruments: surveys,
roundtables, interviews, and historical data. The questions that can be asked in the survey or
during the interviews and roundtables are aimed at collecting information such as



SEL-95-102 50

• Resources (i.e., people, money, time) dedicated to software activities (i.e., development,
management, maintenance)

• Amount of software being developed or maintained, as well as the domain and lifetime
associated with the software

• Hardware and software environment (tools, languages, etc.)

• Methods and technologies used in the different phases of the software life cycle

• Major problem areas and sources of errors

During the development of the baseline, measures can be associated, where possible, with the
information that is collected. Key measures will characterize the software process and products,
emphasizing characteristics closely related to the overall goals of the organization. To identify
these key measures, goals are identified that say why data are being collected. The goals can be
refined into questions based on the phase they address and the viewpoint and characteristic they
take into account. Measures are then associated with these questions to answer them in a
quantitative way. Reference 4 provides additional information on establishing goals, refining them
into questions, and identifying appropriate measures for data collection.

Other measures can be collected during the baselining effort that may have relevance to the
improvement goals being set within the organization. Examples of such measures include

• Error density (e.g., errors per KSLOC)

• Staffing (e.g., number of people) and effort (e.g., staff months) per project

• Software measures (e.g., SLOC, complexity)

• People characteristics (e.g., education, experience)

The major action items performed in the baselining are to

• Identify the major application domains in which the organization operates. This activity
can be accomplished by looking at the functionality of the software developed, general
characteristics of the problem, organizational constraints, standards in use, platforms,
and development environments.

• Develop and adapt data-gathering mechanisms suitable for the specific domain.
Suggested mechanisms include administered surveys, informal roundtable discussions,
data and documentation review, and one-on-one interviews.

• Gather information and insight by interviewing key individuals and groups. Use
directed sampling. Start with senior managers to get an overview of the organization, to
make them aware of the baseline efforts, and to identify software “pockets” within the
organization. Sample these pockets. Be sure to get perspectives from throughout the
organization (senior management, technical management, quality assurance, engineers,
programmers, testers, etc.).

• Analyze the data. Cross-verify data collected.



51 SEL-95-102

• Establish a baseline that outlines the major distributions of relevant characteristics
(effort per phase, errors per product, etc.) quantified by measurement.

• Present results of baselining activities. Present preliminary versions of the baseline to
different organizational levels and incorporate feedback into the baseline.

Table 4-1 provides some guidance for the data collection involved with baselining. This guidance
reflects lessons learned from the baselining of NASA software (References 2, 18, and 19).

Table 4-1.  Key Lessons in Data Collection for Baselining

Do Don’t

Gather data in person.

Prototype and test survey vehicles.

Use quantities or checkmarks.

Use one person (or a small group) for data
gathering.

Use someone familiar with the organization for
baselining activities.

Look for trends and relative comparisons.

Allocate time and resources for baselining.

Mail surveys.

Use descriptive entries.

Use more than three people to collect data.

Rely on someone outside the organization for
baselining.

Get wrapped up in details and statistics.

Expect quick results (baselining takes time).

The baseline is meant to establish where an organization stands today. It is not a basis for
judgment and should not be used to label the organization as good or bad. The baseline provides
the organization with the basic understanding of its products and processes and enables the
organization to measure and control change and progress. To support process improvement, the
baseline must not remain static but must be maintained to reflect current data. See References 2,
18, and 19 for examples of completed reports of baselining activities within NASA.

4.5 Start Operation

The purpose of this step is to initiate the normal daily operation of the software process
improvement organization. Based on the defined goals, a set of processes is initiated as described
in the normal operational phases in Chapter 3.

The recommendations for the implementors in this phase are to

• Ensure that change is driven by the information contained in the baseline and by the
perceptions of the developers.

• Pay attention to the day-by-day comments provided by the developers.

The normal operation of the software process improvement program begins according to the
process described in Chapter 4. The operation follows the three-phase improvement process:
understanding, assessing, and packaging, described in Chapter 2.





53 SEL-95-102

Chapter 5.  Management of the Software Process
Improvement Program

Chapter Highlights

COST

• DEVELOPERS: No more than 2 percent
overhead

• ANALYSTS: Ranges from 5 to 15 percent
• SUPPORT STAFF: Ranges from 3 to 7

percent

BENEFITS

• Established improvement process
• Repository of experience-based software

processes and models
• A process improvement infrastructure
• Structured mechanism for introducing new

technologies
• A reuse-based software development

process
• Quantifiable benefits in specific

organization

KEY MANAGEMENT GUIDELINES

• Limit scope
• Clearly describe and assign roles
• Keep analysts separate from developers
• Ensure that developers drive change
• Proceed slowly
• Produce specific products



SEL-95-102 54

his chapter addresses key management issues associated with the implementation and
operation of a software process improvement program. It discusses issues such as cost
and staffing, as well as determining the payoff of having a process improvement program.

The information is based on lessons learned and insight gained from having instituted such
programs at GSFC’s SEL, JPL’s SORCE, LaRC’s SEAL, and other places where a similar
concept is in place and operating.

5.1 Cost Issues

The cost of process improvement is one of the most critical success factors for a software
improvement initiative based on the approach presented in this guidebook. Besides the cost of the
specific experimentation, whose goal is assessment and tailoring of software engineering
technologies, an ongoing cost exists due to the presence of a measurement system supported by
staff and tools. This section presents information available on the cost of software process
improvement.

Process improvement is not free, but it can be tailored in size and cost to fit the goals and budgets
of any software organization. A software process improvement program must be undertaken with
the expectation that the return will be worth the investment. There will be a cost, however, and it
must be estimated in the organization’s budget; otherwise, there will be frustrations, attempts at
shortcuts, and a failed program. Planning must take into account all the hidden elements of the
proposed program—elements that often are more costly during start-up than they will be after the
program becomes operational. The higher start-up cost is another reason to start small.

Planners often incorrectly assume that the highest cost of process improvement will be assigned to
the developers. That part of the overhead expense, which includes completing forms, identifying
project characteristics, and meeting with analysts, is actually the smallest portion of the three
elements of the software process improvement program’s cost:

• Cost to the software projects (overhead to the developers)

• Cost of quality assuring, storing, and archiving data and packaged experience (cost of
support staff)

• Cost of analyzing and packaging data and experience (cost of analysts)

The cost of process improvement also depends on the following three scope considerations:

• The size of the organization

• The number of projects included in the program and supported by the software process
improvement organization

• The extent of the software process improvement initiative (parts of the life cycle
targeted by the initiative, number of pilot projects, breadth of the measurement program,
etc.)

NASA experience shows that there will be a minimum cost associated with establishing and
operating any effective process improvement program and its associated organization. The total
cost will increase depending on the extent to which the organization wants, or can afford, to

T



55 SEL-95-102

expand the program to address additional projects, more comprehensive studies, and broader
improvement activities.

The cost information available is based primarily on over 18 years of experience from
organizations ranging in size from approximately 100 to 500 persons. Some additional
information has been derived from process improvement programs in larger organizations of up to
5,000 persons. The number of projects active at any time has ranged from a low of 5 or 6 projects
to a high of over 20 active projects, with the projects ranging in size from approximately 5
KSLOC to over 1 million SLOC. Because costs depend on a large number of parameters, a single
definitive value cannot be cited that represents the cost of any organization’s process
improvement program. Based on experience, however, general suggestions can be provided that
an organization can interpret in the context of its own goals and environment.

As a general rule, the overall cost of the program can be represented in terms of the cost to each
of the three organizational elements:

• Overhead to the developers will not exceed 2 percent of the total project development
cost and is more likely to be less than 1 percent (which implies that it is not actually
measurable and is absorbed in the overhead).

• The support staff may reach a constant staff level of from one to five full-time personnel
for data processing support. In addition, the cost of the database software will also be
allocated to the support component.

• Several full time analysts will be required and may cost up to 10 or 15 percent of the
total development budget. As an example, the SEL spends an average of about 7 percent
of each project’s total development budget on analysis and packaging.

Figure 5-1 illustrates the costs of the elements of a software process improvement program as
percentages of the total organizational cost. The individual costs are discussed in more detail in
the following subsections.

5.1.1 Overhead to Developers

The cost of software process improvement should never add more
than 2 percent to the software development or maintenance effort.

The smallest element of the cost of software process improvement is the overhead to the
developers. This overhead includes the cost of completing forms, participating in interviews,
attending training sessions describing measurement or technology experiments, and helping to
characterize project development.

Although start-up costs may be as high as 5 percent of the development budget, the actual cost of
operating an effective program will normally not exceed 1 or 2 percent regardless of the number
of projects under way within the organization.

Some legitimate costs are associated with introducing the providers of data to a new program;
however, part of the higher initial cost is attributable to the inefficiencies inherent in an
inexperienced organization’s program. Such new programs typically ask the developers to



SEL-95-102 56

complete unnecessary forms or require excruciating detail that is of little value or is not a part of
the stated goal. A well-planned program will never impose a significant cost impact on the
development or maintenance project.

Mid-Size Organizations 

(100–500 persons)

Overhead to 
Developers

Cost of 
Support Staff

Cost of 
Analysts

5

10

15

%
 o

f T
ot

al
 S

iz
e

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

Up to 2%

 3–7%

 6–15%

Large Organizations 

(Over 500, Up to 5,000 persons)

Overhead to 
Developers

Cost of 
Support Staff

Cost of 
Analysts

1

2

3

%
 o

f T
ot

al
 S

iz
e

Up to 
1%

Up to 
2%

Up to 
3%

Figure 5-1.  Cost of Software Process Improvement

5.1.2 Cost of Support Staff

The cost of the support staff may range from 3 to 7 percent of the
total development budget.

This element includes collecting, validating, and archiving data. It also includes database
management, library maintenance, execution of support tools, and high-level reporting of
summary measurement data. These essential activities must be planned, supported, and carefully
executed. In addition to the cost of personnel supporting this activity, there will be the added cost
of acquiring and maintaining database software, support tools, and other automated processing
aids (e.g., code analyzers).

Within an organization of over 50 management, technical, and clerical personnel, any process
improvement program will require three to five full-time staff members to handle the necessary
support tasks. A smaller organization, with perhaps only one project and a pilot program, may
wish to combine this data processing effort with the configuration management (CM) or
independent quality assurance (QA) activities; implementation of a separate support element may
not be cost effective. A large organization may benefit by creating separate, structural
components to perform the three distinct roles. A small organization with a small project may
simply assign the roles to individual personnel. In some cases, a single individual may perform
multiple roles, as long as the amount of effort allocated to separate roles is clearly identified.

Experience within NASA has shown that the cost of the support staff supporting organizations of
100 to 200 software developers is approximately 7 percent of the total effort. That cost includes
approximately five full-time support staff personnel (data technicians and database support
personnel) plus the costs of the DBMS and associated software tools and equipment. For larger
programs (250 to 600 software personnel), experience indicates that only one additional full-time
support person is required. Thus, for organizations with 50 to 600 developers, the overhead cost



57 SEL-95-102

is approximately 6 percent of the project cost. For organizations with approximately 500 to 1,000
software personnel, the overhead cost approaches 3 percent of the project cost or about seven
full-time personnel added to the cost of the tools and equipment.

The cost estimates are based on the assumption that an organization is actively working on 5 to
15 development or maintenance projects at any one time. The overall cost of the support staff will
vary significantly depending on the number of projects participating in the program. An
organization of 200 or 300 people actively working on a single large project will require much
less support than the same organization with 20 active smaller projects. Limited experience with
larger organizations of over 5,000 persons indicates that the support staff cost is essentially the
same as that for an organization of 500. As its size increases, an organization tends to collect data
at a less detailed level.

5.1.3 Cost of Analysts

The cost of analysis and packaging ranges from 6 to 15 percent of
the total project budget.

The analysis organization is the most critical part of the process improvement program and incurs
the most cost of the three organizational elements. Without sufficient allocation of effort to the
analysis and packaging function, the process improvement program will fail.

NASA experience shows that the cost of this element far exceeds the combined costs of the other
two. A successful program demands that this cost be recognized and budgeted. For programs
involving 50 to 250 software developers or maintainers, the cost of this activity has consistently
run from approximately 7 to 12 percent of the organization’s total budget. Costs include
designing studies and developing new concepts; developing and writing standards; and analyzing,
providing feedback, and developing improvement guidelines. The cost of this element depends on
the number of active projects within the organization. The figures provided here assume at least
10 active projects and an archive of data from at least 15 projects available for analysis. The
analysis cost would be smaller than indicated if there were fewer active projects.

NASA’s historical data indicate that organizations spending between $20 million and $30 million
for development and maintenance projects have spent between $1 million and $3 million for
extensive and mature analysis efforts (in fiscal year 1993 dollars). For efforts on a much larger
scale, the analysis must necessarily be conducted on a comparably higher level; consequently, the
overhead percentage decreases significantly. An expenditure of an equivalent amount of analysis
resources plus a modest increase due to the size of the organization need not exceed the lower
range of cost for analysis activities. That is, for larger organizations, the cost of analysis and
packaging activities need not exceed 3 percent.

Regardless of the size of an organization, adequate resources must be allocated for this critical
program element.



SEL-95-102 58

5.2 Benefits Obtained

By implementing a process improvement program and establishing an organizational structure
devoted to software process improvement, an organization can reap many benefits:

• An established improvement process for software, substantiated and controlled by
quantitative data

• A repository of software processes and models that are empirically based on the
everyday practice of the organization

• An infrastructure that requires a limited overhead and provides substantial cost and
quality performance benefits

• A structured mechanism for identifying, assessing, and incorporating into the process
new technologies that have proven to be valuable in similar contexts

• A reuse-based software development process including code, designs, processes,
resources, models, lessons learned, and quality functions

The software process improvement program provides a corporate memory of software
experiences that can be used in ongoing and future ventures. The organization gains the ability to
learn from every project, constantly increase the maturity of the organization, and incorporate
new technologies into the life cycle. In the long term, the process improvement program supports
the overall evolution of the organization from a project-based one, where all activities are aimed
at the successful execution of single projects, to a capability-based one, which utilizes the
experience base across all projects.

Are there economic benefits in establishing and supporting a process improvement program?
Identifying conclusive evidence of the economic benefits derived from process improvement
programs is extremely difficult. The major reason for this difficulty is the relative immaturity of
process improvement programs within the software industry whereby quantitative evidence could
be derived.

Quantitative results can be obtained when measurement programs are mature enough to support
the process improvement program. The goal of the process improvement approach detailed in this
guidebook is to improve the products of an organization. Quantifiable benefits and improvements
must be measured against the goals set by the specific organization to improve its products. Have
error rates decreased and reliability improved? Has total system cost been reduced? Has
productivity been improved? The results of process improvement should be quantifiable and
should demonstrate positive return on investment depending on the goals of the organization.

Organizations that have been using the concepts of process and product improvement described in
this guidebook can determine costs, benefits, and general impacts of such a program.
Figures 5-2 through 5-6 show some tangible benefits obtained by one such NASA organization at
GSFC. The data presented indicate the types of benefits that can be achieved by establishing a
process improvement program, but the quantified results are specific to the one organization. The
most important benefit demonstrated here is that an organization can quantify and qualify the
impacts of change. Even if the impact is negative, the organization has gained experience and



59 SEL-95-102

benefited from the additional knowledge. Figures 5-2 through 5-5 focus on impact to product;
they demonstrate change to the product over time as a result of process improvement activities.

Figure 5-2 shows the results of the organization’s process improvement program on its product in
the area of software reliability. As this figure illustrates, reliability has improved by 75 percent as
the average error rate during software development has decreased from 4.5 to 1 error per
KSLOC.

TS = telemetry simulator 
AGSS = attitude ground support system

Early 
(1985–1989)  

8 similar systems 
COBE, GOES, GRO, 
UARS (TS and AGSS)

Current 
(1990–1993) 

7 similar systems 
EUVE, SAMPEX (TS and AGSS) 
FAST, TOMS, WIND/Polar (TS)

0

2

4

6

8

10

Avg  = ~4.5

Low = 1.7 Avg
Low

High 

High = 8.9

E
rr

o
rs

/K
L

O
C

 (
D

e
ve

lo
pe

d)

= 2.4

 = 0.2
 = ~1

Figure 5-2.  Improvements in Product—Reliability

Figure 5-3 shows the results of the organization’s process improvement program on its product in
the area of reuse. This figure shows that the reuse rate has increased by 300 percent from about
20 percent to nearly 80 percent.

0

20

40

60

80
Avg 

~79%

FORTRAN 

(3 similar 

systems)

Ada 

(5 similar 

systems)

61

90

~20%

Avg

%
 R

e
us

e

100

Early  
(1985–1989)  

8 similar systems 
COBE, GOES, GRO, UARS 

(TS and AGSS)

Current 
(1990–1993) 

8 similar systems 
EUVE, SAMPEX, 

WIND/Polar (TS and AGSS) 
FAST, TOMS (TS)

TS = telemetry simulator 
AGSS = attitude ground support system

Figure 5-3.  Improvements in Product—Reuse

Figure 5-4 shows the results of the organization’s process improvement program on its product in
the area of software development cost. This figure shows that the typical mission cost (to deliver



SEL-95-102 60

several similar systems) has decreased by 55 percent from an average of about 490 staff-months
to about 210 staff-months.

0

S
ta

ff 
M

on
th

s

200

400

600

800

Avg = ~490

Low = 357

High = 755

Avg = ~210

Low = 98

High = 277

Early  
(1985–1989)  

8 similar systems 
supporting 4 missions: 

COBE, GOES,  
GRO, UARS

Current 
(1990–1993) 

6 similar systems 
supporting 4 missions: 

EUVE, SAMPEX,  
WIND/Polar

Figure 5-4.  Improvements in Product—Cost

Figure 5-5 shows the results of the organization’s process improvement program on its product in
the area of development cycle time (i.e., the amount of time required for development). As this
figure illustrates, the average development cycle time has been reduced by 38 percent for both
Ada and FORTRAN projects.

0 Current 
(1991–1994) 

FAST, TOMS, 
SAMPEX

Early 
(1986–1990) 

EUVE, GOES, 
UARS

Early 
(1985–1990) 
COBE, EUVE 
GOES, UARS

Current 
(1991–1994) 
FAST, TOMS, 

SAMPEX

Ada FORTRAN

M
on

th
s

30

20

10 13

21

28

16

Figure 5-5.  Improvements in Product—Development Cycle Time

Table 5-1 focuses on the impact of the process improvement program on a specific organization’s
process. Within the past decade, many facets of the organization’s process have evolved and
matured as a direct result of process improvement activities. Software-related activities have been
integrated. Training, standards and policies, measurement, and the adoption of new technologies
are no longer performed in an ad hoc fashion; they fit into the three-phase improvement approach
(understand, assess, package) and work together to meet the organization’s needs. Developers
become an integral part of the improvement process as they see their experience drawn upon and
packaged for subsequent use. Software becomes process driven and less people driven. The three-
phase approach also focuses the role of software engineering research. This research becomes



61 SEL-95-102

driven by the problems and goals of the organization, and a mechanism is in place for the
experimentation, assessment, and adoption of new technologies.

Table 5-1.  Impacts to Software Process

Early to Mid 1980s Mid to Late 1980s Early 1990s

Process Good Better Even Better

Standards Top-down Reflect environment Experience driven; bottom-
up

Training By organization For specific techniques Full program based on local
experience

Measurement Overhead to process,
data driven

Integrated, analysis
driven

Organization’s “way of
doing business”

Life Cycle Waterfall Waterfall Tailorable

Inspections Code/design reading Code/design reading
plus peer reviews

Focused inspections, design
inspections

Research Ad hoc Sometimes product
driven

Product driven, based on
improvement goals

Improvement
Focus

Technology Process Improvement process part
of standards; integrated
experimentation and
development

As these illustrations show, this organization has derived quantifiable benefits from its process
improvement program in the areas of reliability, reuse, cost, and cycle time. Its process has also
matured in many ways. Another factor considered by the organization is that the software being
produced today is much more complex than in previous years. Despite the increased complexity,
the organization has been able to produce the functionality needed for these more complex
systems while improving reliability and reducing cost.

The use of a process improvement program to guide, manage, and improve processes will provide
an action-feedback mechanism for recording the current performance of the organization and
observing the actual impact of process changes. Control over change is a way to invest resources
in changes that proved to be effective in achieving the overall goals of the organization. In
general, a process improvement program should allow more control over what is happening in the
organization. The models used by management to predict the behavior of the software processes,
their cost, use of resources, compliance with schedule, and effectiveness, are based on internal
data and experience. Thus, management should be better able to trust those models. Based on
experience and information gained on previous projects, managers should also be better able to
handle the cases in which things do not go according to the predictions. Figure 5-6 demonstrates
some of these ideas. This figure shows the long-term effect of process improvement on reliability
and demonstrates that the organization has gained a level of manageability and control. Over the
years, not only has the average error rate decreased, but the band between the high and low
values has narrowed. As a result, planning and controlling the quality of the software being
produced have become much easier for managers within this organization.



SEL-95-102 62

Project Midpoint

0

2

4

6

8

10

12

14

1976 1978 1980 1982 1984 1986 1988 1990 1992 1994

ISEEB

WINDDV

DEA

SEASAT

MAGBIAS

DEDET GROSIM

MAGSAT

DERBY

ERBS

DEB

FOXPRO

SMM

PAS
ISEEC

GSOC
DESIM

COBEDS

GROSS

GRODY

UARSDSIM

GMASUI

WINDPOPS

GOESAGSS

GOFOR

COBEAGSS

ASP ADEAS

GROAGSSCOBSIM
FDASF
BBXRT

GOADA
UARSTELS UARSAGSS

TONSIBM
POWITS

GOESIM

SAMPEXTS

EUVEAGSS   

TOMSTELS
EUVETELS

EUVEDSIM
SAMPEX

FASTELS

AEM

GROHUD

FORTRAN Ada

E
rr

o
rs

/K
D

LO
C

Linear regression: 

Upper data points

Linear regression: 

All data points

Linear regression: 

Lower data points

Figure 5-6.  Long-Term Reliability Trends

Finally, especially in industry, there is a strong economic motivation for the organization to have
process improvement programs and prove the maturity of its process. Within the CMM
framework, for instance, continually improving (Maturity Level 5) organizations are much more
competitive and likely to win Government contracts than those that operate in an ad hoc fashion
(Maturity Level 1). In increasingly competitive markets, organizations without process
improvement programs will be at a disadvantage to those with process improvement programs in
place.

5.3 Key Management Guidelines

NASA’s experience in implementing software process improvement programs has resulted in a list
of recommendations for any organization that wants to create a software process improvement
program. Some of those recommendations and lessons learned have already been introduced in
Chapter 4. A short summary is provided in Table 5-2.

The issue of limiting the scope is based on two considerations. First, because process
improvement represents, as shown in this chapter, a limited but significant overhead, quickly
achieving the expected benefits is necessary to obtain the support needed to continue the
program. Achieving success by applying corrections that can be effective very quickly proves
easier in a smaller environment. For instance, suppose too many measures have been selected for



63 SEL-95-102

Table 5-2.  Key Lessons in Starting a Process Improvement Program

Do Don’t

Limit scope (start small).

Specify who will analyze and package (separate
from developers).

Produce specific products the first year (concepts,
baseline, perceived changes, software process
handbook).

Assure developers that they drive change
(analysts are helpers).

Proceed slowly.

Assume bigger is better.

Assume developers can also do packaging.

Focus on collecting data.

Ignore experience or perception of developers.

Promise more than you can deliver.

implementation, and the data collection costs turn out to be larger than expected. Changing the
standards and reorganizing the data collection process according to the original intentions are
easier in a smaller environment. Second, delimiting is easier in a well-defined application and
organizational domain. Because the predictive value of models and experiments is directly related
to the appropriateness of the chosen domain, success is easier to achieve if this choice can be well
delimited and characterized. Adhering to this principle will help keep the cost of the first phase
(Understanding) low.

Developers cannot be expected to perform the analysis and packaging for the software process
improvement organization. The packaging of experience is based on tenets and techniques that are
different from the problem-solving approach used in software development. Developers design
systems and solve problems by decomposing complex issues into simpler ones, based on a divide
and conquer approach. Their goal is to deliver a system that satisfies the needs for which it has
been designed within the time and budget constraints established at the beginning and corrected
during the project lifetime. Experience packaging, on the other hand, is performed by unifying
different solutions according to domain specificity and observed similarity. The goal is to extract
from a project enough information to be able to effectively reuse the development experience in a
different context within the same domain.

Therefore, the process improvement organization itself is composed (primarily) of two different
suborganizations, each one with specific goals, products, and measures of success. The goal of
the development organization is to deliver a software system, whereas the goal of the analysis
organization is to analyze and package experiences into a form useful to the development group.
The success of the development organization is measured by delivering on time and within budget
a software product that meets the needs for which it has been designed. The success of the
analysis organization is measured by its ability to provide and use in a timely way products,
processes, and information that can be used by the developers. Every product from one side (the
analysts) is derived from the specific experiences of the other side (the developers).

The separation between analysts and developers should not mean that the experience and
perception of the developers are not taken into account. Their experience feeds process
improvement, and their cooperation makes it useful and worth the investment. Although the
analysts perform the major part of the work in collecting and packaging data and information, the
developers are the driving force of change. They need to recognize the value of the support they
receive from the analysts. If the perception exists that the activities of the analysts absorb



SEL-95-102 64

resources without providing real value, the whole initiative will likely fail. Therefore, it is
important to get the developers’ acceptance and support by aiming at their real problems,
minimizing the effort on their side, and still giving them decisional power over change. The
developers may consider measurement an annoyance, but this is not a big problem. The important
thing is that measurement is not perceived as a threat. As long as a manager ensures that
measurement will never be used to rate programmers, the developers will treat measurement
responsibilities as just one more task that is part of their job.

The last issue associated with the successful development of a process improvement program is
the need, on one hand, to proceed slowly and, on the other hand, to produce specific products
(concepts, baseline, perceived changes, software process handbook) as soon as possible, perhaps
even in the first year of the initiative. The personnel in charge of the initiative should be able to
define a set of capabilities and products that will be ready and available for the organization at
specific milestones in the program. These capabilities and products, such as providing a
characterization of the organization’s technical baseline or repeating the characterization process
carried out in a specific domain in other contexts, should present in the most practical way the
value that the process improvement program provides for the whole organization.



65 SEL-95-102

Appendix A.  Glossary of Terms

his appendix contains definitions of terms used throughout this document and provides
synonyms commonly used for these terms.

Analysis Organization: The organization whose focus and priority is to support process
improvement by analyzing experience drawn from the development organization. The analysis
organization synthesizes the information in the form of policies, standards, training materials and,
in general, models of the product and of the process (both formal and informal).

Synonyms: Analysts, analysis and packaging element, analysis element.

Assessing Phase: The second of the three phases in the software process improvement paradigm
where some change is introduced and the impact of that change on both software process and
product is then determined. This phase is generally thought of as the experimental step in which
some defined change to the process (e.g., the use of a new set of standards, the introduction of a
new design technique) is evaluated against the baseline.

Synonym: Experimentation.

Development Organization: The organization, including all the developers and maintainers,
whose primary objective is to produce software that meets the customer’s needs on time and
within budget. Additionally, this organization must provide development information to the
analysts. It receives process and product information from the analysts and reuses this information
in its activities.

Synonyms: Developers, maintainers, project element, project organization, experience source,
source of data.

Packaging Phase: The last of the three phases in the software process improvement paradigm
where changes that have produced satisfactory results are incorporated into the mainstream of the
organization. The analysts develop new models, documents, standards, and training materials
based on what has been learned during the Assessing Phase. The products developed by the
analysts are stored by the support staff into the experience base and are provided to the
developers upon request.

Repository: The “corporate knowledge” of an organization consisting of a projects database and
a library. The projects database (usually a RDBMS) contains the historical project data (e.g., cost,
schedule, and error data). The library consists of the data collection forms, project-related
documentation from the developers, and the products of the analysts such as models, reports,
standards, policies, and handbooks.

Synonym: Experience base.

T



SEL-95-102 66

Software Process Improvement: The continual and iterative improvement of both the software
process and products through the use of project experiences.

Synonyms: Software product improvement, software process and product improvement.

Software Process Improvement Organization: An organizational structure devoted to
continually using lessons, data, and general experience from software projects to ensure that
ongoing and ensuing efforts use the experience to improve their software products and processes.

Synonyms: Experience factory, experience factory organization.

Support Organization: The focal point for all the archived information produced and used
within the software process improvement program. This group is responsible for collecting,
quality assuring, storing, retrieving, and archiving the data drawn from the developers. This
organization maintains the repository of development information and packaged experiences.

Synonyms: Support staff, support element, technical support, repository component.

Understanding Phase: The first of the three phases in the software process improvement
paradigm where characteristics of the software process and products are continually captured
within the project organization. Models, relationships, and general descriptions of the process and
products are generated. Understanding is the required starting point of the overall process
improvement sequence, and it is unending because changes must be also understood and
characterized.

Synonyms: Baselining, characterizing.



67 SEL-95-102

Abbreviations and Acronyms

AGSS attitude ground support system

CDR critical design review

CM configuration management

CMM Capability Maturity Model

COBE Cosmic Background Explorer

DBA database administrator

DBMS database management system

DLOC developed lines of code

DSN Deep Space Network

EOS Earth Observing System

EUVE Extreme Ultraviolet Explorer

FAST Fast Auroral Snapshot Explorer

GOES Geostationary Operational Environmental Satellite

GQM Goal/Question/Metric

GRO Compton Gamma Ray Observatory

GSFC Goddard Space Flight Center

IRM Information Resources Management

IV&V independent verification and validation

JPL Jet Propulsion Laboratory

KDLOC one thousand developed lines of code

KLOC one thousand lines of code

KSLOC one thousand source lines of code

LaRC Langley Research Center

MSLOC million source lines of code

NASA National Aeronautics and Space Administration

OOT object-oriented technology



SEL-95-102 68

Polar Global Geospace Science Polar Spacecraft

QA quality assurance

R&D research and development

RDBMS relational database management system

RTOP Research Topic Operating Plan

SAMPEX Solar, Anomalous, and Magnetospheric Particle Explorer

SEAL Software Engineering and Analysis Laboratory

SEI Software Engineering Institute

SEL Software Engineering Laboratory

SEPG Software Engineering Process Group

SLOC source lines of code

SORCE Software Resource Center

TOMS Total Ozone Mapping Spectrometer

TS telemetry simulator

UARS Upper Atmosphere Research Satellite

WIND Global Geospace Science Wind Spacecraft



69 SEL-95-102

References

1. “The Software Engineering Laboratory—An Operational Experience Factory,” V. Basili,
F. McGarry, et al., Proceedings of the Fourteenth International Conference on Software
Engineering, Melbourne, Australia, May 1992

2. Profile of Software at the National Aeronautics and Space Administration, NASA
Software Engineering Program, D. Hall, R. Pajerski, C. Sinclair, and B. Siegel,
NASA-RPT-004-95, April 1995

3. Software Engineering Laboratory Relationships, Models, and Management Rules,
W. Decker, R. Hendrick, and J. Valett, SEL-91-001, NASA/GSFC, February 1991

4. “A Methodology for Collecting Valid Software Engineering Data,” V. R. Basili and
D. M. Weiss, IEEE Transactions on Software Engineering, November 1984

5. “An Analysis of Defect Densities Found During Software Inspections,” J. C. Kelly,
J. S. Sherif, and J. Hops, Journal of Systems and Software, Volume 17, Number 2,
February 1992

6. “Cleanroom Software Engineering,” H. D. Mills, M. Dyer, and R. C. Linger, IEEE
Software, September 1987, pp. 19-24

7. The Cleanroom Case Study in the Software Engineering Laboratory: Project Description
and Early Analysis, S. Green, et al., SEL-90-002, NASA/GSFC, March 1990

8. “Software Process Evolution at the SEL,” V. Basili and S. Green, IEEE Software, July
1994

9. “Impact of Ada in the Flight Dynamics Division: Excitement and Frustration,” J. Bailey,
S. Waligora, and M. Stark, Proceedings of the Eighteenth Annual Software Engineering
Workshop, SEL-93-003, NASA/GSFC, December 1993

10. “Impacts of Object-Oriented Technologies: Seven Years of SEL Studies,” M. Stark,
Proceedings of the Conference on Object-Oriented Programming Systems, Languages,
and Applications, September 1993

11. “Criteria for Software Modularization,” D. N. Card, G. Page, and F. E. McGarry,
Proceedings of the Eighth International Conference on Software Engineering, New York:
IEEE Computer Society Press, 1985

12. “Comparing the Effectiveness of Testing Strategies,” V. R. Basili and R. W. Selby, IEEE
Transactions on Software Engineering, December 1987

13. Software Engineering Laboratory (SEL) Cleanroom Process Model, S. Green,
SEL-91-004, NASA/GSFC, November 1991



SEL-95-102 70

14. “Domain Identification for Optimizing Software Reuse,” V. Basili, L. Briand, and
W. Thomas, Proceedings of the Nineteenth Annual Software Engineering Workshop,
SEL-94-006, NASA/GSFC, December 1994

15. Capability Maturity Model for Software, Version 1.1, M. Paulk, B. Curtis, M. Chrissis, and
C. Weber, Software Engineering Institute, Carnegie Mellon University,
CMU/SEI-93-TR-24, February 1993

16. Software Measurement Guidebook, NASA Software Engineering Program, M. Bassman,
F. McGarry, R. Pajerski, et al., NASA-GB-001-94, August 1995

17. Software Engineering Laboratory Database Organization and User’s Guide (Revision 2),
L. Morusiewicz and J. Bristow, SEL-89-201, NASA/GSFC, October 1992

18. Profile of Software Within Code 500 at the GSFC, NASA Software Engineering Program,
D. Hall and F. McGarry, NASA-RPT-001-94, April 1994

19. Profile of Software at the Goddard Space Flight Center, NASA Software Engineering
Program, D. Hall, F. McGarry, and C. Sinclair, NASA-RPT-002-94, June 1994



71 SEL-95-102

Index

activities
of analysts, 30, 37, 38–40
of developers, 30, 35–36
of support staff, 30, 41–43

analysts, 5–9, 30, 37–40, 45
activities, 37, 38–40
cost of, 55, 57
resources, 37

approach
to software process improvement, 5, 9–19

bottom-up, 27, 61
other approaches, 5–6, 23–28
top-down, 27, 61

assessing, 5, 14–18
Cleanroom, 17–18
inspections, 15–17

baseline, 8–14, 20, 23–27, 49–51, 63–64
producing, 45, 51

benefits, 53, 58–62
bottom-up approach, 27, 61
Capability Maturity Model, 23–28, 62
Cleanroom, 26

assessing, 17–18
packaging, 20–21

CM See configuration management
CMM See Capability Maturity Model
commitment

obtaining, 46–48
components

of information repository, 42–43
of software process improvement organization, 5–9, 29, 42

configuration management, 56
cost of software process improvement, 54–57

cost of analysts, 55, 57
cost of support staff, 55, 56–57
overhead to developers, 55–56

database
administrator, 42–43
projects, 40, 42

developers, 5–9, 30, 34–36, 45
activities, 35–36
overhead to, 55–56



SEL-95-102 72

resources, 34
domains, 5, 6

for software process improvement, 5–6, 46
establishing

process, 45, 49
structure of software process improvement organization, 45, 49

experimentation See assessing
framework

for software process improvement, 28
Goal/Question/Metric paradigm, 15
Goddard Space Flight Center, 2, 54
GSFC See Goddard Space Flight Center
implementation

of software process improvement program, 45–51
independent verification and validation, 8
information flow

among components, 7
information repository, 30, 33, 43

components of, 42, 43
inspections, 15, 17–18, 20, 61

assessing, 15–17
packaging, 19

Jet Propulsion Laboratory, 2, 54
JPL See Jet Propulsion Laboratory
Langley Research Center, 2, 54
LaRC See Langley Research Center
library, 41–43
management

key guidelines, 53, 62–64
of software process improvement organization, 62–64

measurement, 2, 9–10, 15, 17–19, 25–27, 30, 41, 51, 54, 56–58, 61, 64
measures, 9, 15–17, 23, 24, 27, 32, 36, 50, 63
models, 3, 7, 14, 19, 32, 39, 30–40, 53, 58, 61, 62, 63
obtaining commitment, 46–48
operation

of software process improvement program, 31–43
starting, 45, 51

packaging, 5, 19, 18–21
Cleanroom, 20–21
inspections, 19

Phase 1 See understanding
Phase 2 See assessing
Phase 3 See packaging
process

establishing, 45, 49



73 SEL-95-102

producing baseline, 45, 51
QA See quality assurance
quality assurance, 56
resources

analysts, 37
developers, 34
support staff, 40

SEAL See Software Engineering and Analysis Laboratory
SEI See Software Engineering Institute
SEL See Software Engineering Laboratory
Software Engineering and Analysis Laboratory, 2–3, 54
Software Engineering Institute, 23
Software Engineering Laboratory, 2–3, 54, 55
software process improvement organization, 6, 7
Software Resource Center, 3, 54
SORCE See Software Resource Center
starting operation, 45, 51
structure

of software process improvement organization, 5–9
establishing, 45, 49

of software process improvement program
example, 42

support staff, 5–9, 30, 40–43, 45
activities, 41–43
cost of, 55, 56–57
resources, 40

top-down approach, 27, 61
understanding, 5, 9–14, 32




