SOFTWARE ENGINEERING LABORATORY SERIES SEL-95-102

SOFTWARE PROCESS
IMPROVEMENT GUIDEBOOK

Revision 1

MARCH 1996

National Aeronautics and
Space administration

Goddard Space Flight Center
Greenbelt, Maryland 20771

Foreword

The Software Engineering Laboratory (SEL) is an organization sponsored by National
Aeronautics and Space Administration/Goddard Spaght Center (NASA/GSFC) and created
to investigate theeffectiveness ofsoftware engineering technologies when applied to the
development of applications software. TBEL was created in 1976 ahds thregrimary
organizational members:

NASA/GSFC, Software Engineering Branch
University of Maryland, Department of Computer Science
Computer Sciences CorporationSoftware Engineering Operation

The goals of the SEL ar@) to understand the softwatevelopment process in the GSFC
environment;(2) tomeasure the effects of various methodologiesls, andmodels on this
process; an@3) toidentify and then t@apply successful developmepriactices. The activities,
findings, and recommendationstbe SEL are recorded in the Softwénegineering Laboratory
Series, a continuing series of reports that includes this document.

This Software Process Improvement Guidebbak also been released as NASA-GB-001-95, a
product of theNASA Software Program, amgency-wide program tgoromote continual
improvement of software engineering within NASA.

The following are primary contributors to this document:
Kellyann Jeletic, Goddard Space Flight Center
Rose Pajerskj Goddard Space Flight Center
Cindy Brown, Computer Sciences Corporation

Single copies of this document can be obtained by writing to

Software Engineering Branch
Code 552

Goddard Space Flight Center
Greenbelt, Maryland 20771

i SEL-95-102

Abstract

This Software Process Improvement Guidebgmiovides experience-based guidance for
implementing asoftware process improvement program in any NASA software development or
maintenance community. It describ#ise program’s concepts abdsic organizational
components and provides detailslow todefine,operate andimplement aworking software

process improvement program. The guidebook also illusafitdese conceptasing specific
NASA examples.

v SEL-95-102

Contents

Foreword

Chapter 1. Introduction

1.1
1.2
1.3

BaCKGIrOUNGccei e et e e et srm—— 2.
P U DO e et e e e e 2
L@ (o =T g T4 (o] o PSP 3

Chapter 2. The Software Process Improvement Framework

2.1
2.2

2.3
24

The Software Process Improvement OrganizatiQn.............cooveevieeeeiineeeeiineeeeieeeeenen 6

The Software Process Improvement APProach.............ovieiiiiiiiiiiiiiiiiie et eeei e eeeees 9
2.2.1 Phase 1—UNderstanding..........ooeeeeuiiiiiiieeeis e 9
22.2 PRASE 2 ASSESSING. ...ttt eae 15
2.2.3 Phase-3-Packaging..........ccouuiiiiiiiiiii e 19
Domains for Software Process Improvement............ccoooiieiiiiiiiiiein e e 21
Comparison of Two Software Process Improvement Approaches............ccc..ccc..... 23

Chapter 3. Structure and Operation of the Software Process

3.1
3.2

3.3

3.4

3.5

Improvement Organization

Components of the NASA Software Process Improvement Organization............. 30
DSV (o] o= £ PSP 34
T I O V=T V1 PP 34
3.2.2 RS OUICES ..ttt et e s e—— 34.

T T o 1Y/ [PP 35
Y = 111 £ PP PPTTRN 37
G TG TR I O V=T V1 PSP 37
3.3.2 RS OUICES ..t e et e et e s so— 37.

G TG T T o 1Y/ 1= PP 38
SUPPOIT STAIT ... e e e e e e et eeeaa s 40
I O V=T V1 PP 40
3.4.2 RS OUICES ..ttt et e e e s— 4Q.

B B o 1Y/ [PP 41
SUIMIMIBIY. . ettt ettt ettt et e et ettt e et e e et e et et e e ea e e e an e e een e e e et e e ean e eanaeeennns 43

Vii SEL-95-102

Chapter 4. Implementation of the Software Process Improvement

4.1
4.2
4.3
4.4
4.5

Program
ObtaiN COMMITMENT. ... it et e et e e e et e e e eaa e e eennns 46
EStabIliSh STrUCKUIE. ... et e et e eanas 48
EStaDIISN PrOCESS.. .. ciiiieiiiii ettt e e e e e e e et e e ee e e eee 49
Produce @ BASEIINE..........uiiiiii e 49
Yt T @] 0 =T = 11 o] o [P 51

Chapter 5. Management of the Software Process Improvement

5.1

5.2
5.3

Program
(070 1S] B K1 UL PSPPSR 54
5.1.1 Overhead t0 DEVEIOPEIS.uu e 55
5.1.2 CoSt Of SUPPOIT Staff.... o 56
5.1.3 COSt Of ANAIYSES. ..o e 57
BenefitS ODIAINEM.......coeue e 58
Key Management GUIAEINES.........ccouuui it 62

Appendix A. Glossary of Terms

Abbreviations and Acronyms

References

Index

Standard Bibliography of SEL Literature

SEL-95-102 viii

Figures

Software Process Improvement OrganiZatiOn..............uoeeeeuuieeeeuinee et eeeiaeeeiineeeeees 8
Three-Phase Approach to Software Process Improvementccoeeuvveeeeeecannes 9
NASA Operational Software DOMAINS..........ccouuuiiiiiiieiiii e 11
NASA SOftWAre RESOUICES.....ccutiiiiiiiiie et e et e e e aa e e e eean e 11
NASA Language Preferences and Trends.........covovveiiiiiiiiiiiiiceieeee e 12
Effort DisStribution DY TImM@..... oo e 13
Effort DiStribution DY ACHVILY.uuiieii e 13
Error DIStribution DY CIaSS......oocuiiiii e 13
Error DIStribution DY OFIgiN...... oottt eaans 13
Error DeteCiON RALE it e e et eaaas 14
Sample Process RelationShips...... oo 14
Assessing the Impact Of INSPECHIONS.......coiuu i 17
Assessing the Impact of Cleanroom 0N ProCeSS..........oovvuiiiiiiiieieiiiieeeee e 18
Assessing the Impact of Cleanroom on Product............ooooeiiiiiiiiiiiiiicceeeeie 18
Packaging Experiences With INSPECUONScc.uuiiiiiiiiiiiiie e 20
Packaging Experiences With CleanroDm.............oov i 21
Examples of Potential Domains Within NASA ... 23
CMM and NASA Software Process Improvement Paradigms...........cccoevevevvineeennn. 25
Activities of the Software Process Improvement Organization...............cc.ueveeveennnnn. 31
Sample Process Improvement Organization............oooveevieeiiiineeeeiee e 38
Sample Process Improvement Organizational Structure.............ccooeevviveiiiieeinneeennnn. 48
Cost of Software Process Improvementcooovveviiiiieiiiiiiiiee e 56
Improvements in ProduetReliability.............coouiii 59
Improvements in ProdUCI—REUSE.ooiiiiiii e 60
IMprovements iN ProdUCT—COSL........cuuiiiiiii e 60
Improvements in Product—Development Cycle Time..........ccovoviiiiiiiiiniiieeee, 61
Long-Term Reliability TrendS.... ... 62

X SEL-95-102

2-1
2-2
2-3
3-1
3-2
3-3
3-4
4-1
5-1
5-2

Tables
Focus of Software Process Improvement Organization Companents...................... 7
Role of the Analysis Organization...............viieuuiiiiiii e 8
The NASA Software Process Improvement Approach Versus the.CMM............... 27
ACLIVItIeS Of the DEVEIOPEIS....... e 31
ActivitiesBefore or at ProjeCt Startooooeeuiiiiiiiiiiee e 32
Activities DUING the ProjJeCL....... oo e 33
Activities At orAfter Project ComPpPletion ... i 33
Key Lessons in Data Collection for Baselining.............cooovviiiiiiiiiiiiiiiiieceii e 51
IMPACES tO SOftWAIE PrOCESS.....uui ittt e e e e 61
Key Lessons in Starting a Process Improvement Program.............ccceevevevvineeennnnnne. 63

SEL-95-102 X

Chapter 1. Introduction

Document Highlights

CHAPTER 1:

Introduction

O

CHAPTER 2:

Software Process Improvement
Framework

Organization Assess
Understand

Domains Package

CHAPTER 3:

Structure and Operation of the
Software Process Improvement
Organization

Analysts

Support Staff

10) |

Developers

CHAPTER 4:

Implementation of the Software
Process Improvement Program

Process
Structure

Commitment]

CHAPTER 5:

Management of the Software
Process Improvement Program

A
> am -

‘ﬁd Key| Point

Cost

Benefits

SEL-95-102

1.1 Background

ne of the mossignificant challenges faced Ibye softwarengineering community in

recent years has been to continually capitalizeoftware development amaaintenance

experiences, whether good or b&adpitalizing involves application of new technologies
and evolution of technologies alreadidely in use, aswell asthe definition andadoption of
standards. One goal of softwamegineering practitioners is to masere thatll thoseactivities,
which generally can belassified asprocess andproduct improvements, are based upon
understanding the impact on the target application domain in an appropriate way.

There is an evident need to implement some means by whichse¥evgreactivity provides new
and improved insight into continually improvingethods for developing anthaintaining
software; every experience must be usedjam new knowledge. To dso, every software
organization should be embedded in an infrastructineed at capitalizing on previous
experience. Thisconcept is derived fromseveral specificprograms within the National
Aeronautics and Space Administration (NASA) [e.g., the Software Engineering Laboratory (SEL)
of NASA/Goddard SpaceFlight Center (GSFC), the SoftwarEngineering andAnalysis
Laboratory (SEAL) atNASA/Langley ResearciCenter (LaRC), and the JeRropulsion
Laboratory’s (JPL's) Software Resource Center (SORCE)] argimgar in functionality to
another conceptalledthe software Experience Factory (ReferehceContinual improvement
based on specific experiences tigee underlying concept of the NASA software process
improvement program.

Although not specificallydesignated in the title, both software process and soffwvadhict are
emphasized in this guidebook atite overall NASA program. Improvements the software
process result iimeasurable improvements tbe software produchence “software process
improvementimplies “software process ANRProductimprovement.” The importance of both is
emphasized throughout this document.

The NASA software process improvement programpports continual softwarequality
improvement anthe use and reuse of software experience by developing, updatingaland
available keysoftware technologies, knowledge, and produmtginating from operational
software projects and specific experimentation.

This guidebook addresses the needs of the NASA softecarenunity by offering a framework
based on an evolutionary approaclytality management tailorédr the softwardusiness. This
approach is supported by anganizational infrastructure for capturing and packaging software
experiences and supplying them to ongoing and future projects.

1.2 Purpose

The purpose of this document is to provide experience-based guidance in implementing a software
process improvement program in any NASA software development or maintenance community.

This guidebook detailhhow todefine, operate,and implement aworking software process
improvement program. It describd®e concept of the software procasprovement program
and its basic organization@lomponents. It then describes thiucture, organization, and
operation of the software procesaprovement program, illustratingll these conceptsvith

SEL-95-102 2

specific NASA examplesThe information presented the document is derived from the
experiences of several NASA software organizatiomduding the SEL, the SEAL, and the
SORCE. Their experiences reflacany ofthe elements okoftware process improvemesithin
NASA.

This guidebook presents lessons learned in a form usable by anyone consdtinlighing a
software process improvement progravithin his or her own environmenthis guidebook
attempts tdbalance general and detailed information. It provides material general enough to be
usable by NASA organizations whose characteristics do not directly match those of the sources of
the information and modelpresented herein. It also keeps ttleas sufficientlyclose to the
sources of the practical experiences that have generated the models and information.

1.3 Organization
This “Introduction” is followed by four additional chapters.

Chapter 2 presents an overview of concepts pertaining to software process improvement,
including the organizationatructure needed to support procaeprovement, the three-phase
software process improvement approattte scope of an organization which process
improvement is to be applied (domain), atiee unique aspects othe software process
improvement framework presented in this document vathes software processiprovement
approaches.

Chapter 3 presents the structure dy@cal NASA software process improvement program and
describes thenajor components dhe software processiprovement organization. The chapter
gives an overview of each die three organizational components and discusses the resources
each component requires. It also presents details regéndiraperation of the software process
improvement prograndescribingthe responsibilities, activities, and interaction of each of the
three organizational elements. The chapter ddtails each component performs Hetivities
associated with its process improvemesponsibilities anthow the three groups interact and
operate on a daily basis.

Chapter 4 presents the steps for implementing software process improvement in an organization.

Chapter 5 addressksy management issues associated thahmplementation andperation of
a software process improvement program, including cost and potential benefits.

3 SEL-95-102

Chapter 2. The Software Process Improvement

Fram

ework

Chapter Highlights

APPROACH

Understanding
Assessing
Packaging

* NASA Approach
» Capability Maturity Mode

STRUCTURE

» Developers
* Analysts
* Support Staff

23

DOMAINS

Scope of an organization to
which process improvement is
to be applied

Transfer of information across
domains

Improvement of software within
a domain

VARIOUS APPROACHES T |
I
» Emphasis on the need for
continual, sustained improvement | |

of software

SEL-95-102

within NASA. The first section discusses tkey components dhe software process
improvement frameworkspecifically, the organizationatructure needed téacilitate
process improvement. The next sections cover the three-phase software ipnpo@ssment
approach and related conceptsluding “domain.” (A domain is a classification scheme as it
pertains to thepplication ofthe processmprovement approachithin a specificorganization.)
The last section discusses the unique aspects of this process improvement framework with respect
to other processnprovement approaches. Sometled concepts introduced tinis chapter are
discussed in further detail in later chapters.

T his chapter provides an overview of concepts pertaining to software progessement

2.1 The Software Process Improvement Organization

Historically, software organizations hawxhibited significantshortcomings in theiability to
capitalize onthe experiencegained from completed projects.ost of thensight has been
passivelyobtained instead of aggressivgiyursued throughspecific plans and organizational
infrastructures.

Software developers and managers, althauglhmeaningand interestedyenerally donot have

the time or resources to focus obhuilding corporateknowledge or organizational process
improvements(For this document, a “software developertdefined to be any technicatoject
personneljncluding designers, developmemd maintenance programmers, technical managers,
and any othertechnicalcontributors.)They have projects to run asdftware to deliver. Thus,
collective learning and experience must becommerporate concerand bereated as aompany
asset. Reuse of experience amallective learning should bsupported by arorganizational
infrastructure dedicated to developing, updating, aogplying uponrequest synthesized
experiences and competencies. This infrastructure should em@Eseeng continual sustained
improvement.

Software process improvement organizationthin NASA are structures devoted tsing
lessonsdata,and general experience from software projects to etisatr@ngoingand ensuing
efforts use the experiencgained to continually improvihe associated organization’s software
products and processes.

Software process improvement organizatiaithin NASA are dedicated to software process
improvement andthe reuse of experience. Each NASA software prongs®vement
organization consists of

. Developerswho designjmplement, andnaintainsoftware.They also provide project
documentation and data gathered during development and operations.

. Process Analystghereafter referred to as analysts), who transform déia and
information provided bythe developers into reusalitems (e.g., standardsnodels,
training) and supply them back tiee developersihey providespecificsupport to the
projects on the use of tlaalyzed and synthesized information, tailoring it to a format
that isusable by and useful tocarrrent software effort. In some progrartiss element
may be called the Software Engineering Process Group (SEPG).

. SupportStaff,who provideservices tdhe developers by supporting datdlection and
retrieval and to the analysts by managing the repository of information.

SEL-95-102 6

Although separate, these three componentmameately related to each other. Each component
has its own goals, process, and pldng, togetheall three components havke mission of
providing softwarethat is continually improving in quality andost effectiveness. Table 2-1
outlines thedifferences in focus amorthe three component®mprisingthe software process
improvement organization.

Table 2-1. Focus of Software Process Improvement Organization Components

Area Developers Analysts Support Staff
Focus and Specific project Multiple projects (specific | Multiple projects (specific
Scope domain) domain)

Goals Produce, maintain Analyze and package Archive, maintain, and
software experience distribute development
Satisfy user requirements | Support developers and maintenance

experience

Approach Use the most effective Assess the impact of Maintain a repository of
software engineering specific technologies experiences, models,
techniques Package experience into standards, etc.

models, standards, etc.

Measure of Delivery of quality Reuse of empirical Efficient collection,

Success software products on software experience by storage, and retrieval of
time and within budget developers information (data,

Improved products models, reports, etc.)

The developers’ goal is to delivesaftware system. Their success is measuretklyering, on
time and within budget, a software product that meets the needs of the user.

The analysts’ goal is tanalyze angackage experiences into a fouseful tothe developers.

They use information such as development environment profile, methods, characteristics,
resources breakdown and utilizatientor classes, and statistics to produeedels ofproducts

and processes, evaluations, aefined development information. Théet of products could
include cost models,reliability models, domain-specifiarchitectures and components, process
models, policies, antbols. Every product of the analysts @erived from specific experiences of

the developers. The success of the analysts is measured bwMilsirto provide to the
developers, in éimely way, usefubroducts, processes, amformation. Ultimatelythe success

of the analysts is measured by improved software products.

The success of the suppatiaff is measured bthe efficiency of the information collection,
storage,and retrieval system, and the degreeviiach it relievesthe overall organization of
unnecessary activities and waiting periods.

Figure2-1 provides a high-level picture of the software progsapsovement organization and
highlights activities and information flows among its three components.

The developers produce andhintainsoftware but are natirectly responsibléor capturing the
reusable experience. They provithee angsts with project andenvironment characteristics,
developmentdata, resource usage informati@uality records, and process information. The

7 SEL-95-102

Project Organization <_ Analysis Organization
Tailored processes

and models « Analyze software process and products

Develop/maintain software !
» Package process improvements

Developers Process feedback Analysts
Development data and
software product characteristics
Packaged experience

Support Organization

Maintain repository of development information and packaged experiences

Figure 2-1. Software Process Improvement Organization

developers also provide feedback on the actual performance aoficidelsproduced by the
analysts and used by the project. Therefore, with respect to software process improvement, the
developers have thglobal responsibilityfor using, in the mosffective way,the packaged
experiences to deliver high-quality software.

The analysts, by processitige information received fronthe developers, produceodels of
products and processes and return direct feedback to each project. Thegdlse and provide
baselinestools, lessons learned, amidta, parameterized some form inorder to be adapted to
the characteristics of a project.

The supporstaff sustain and facilitatde interaction between developers and analyssa\bgg
andmaintainingthe informationmaking it efficientlyretrievable, and controlling and monitoring
access to it. They use tools that assist in collecting, validating, and redistributing data and reusable
experience.

The roles of the developers asdpport staff in software process improvemesmte easily
understood. The role of the analyst$eiss clearhowever, based on theformationstated thus
far, Table 2-2 summarizes what the role of the analysis organization is and is not.

Table 2-2. Role of the Analysis Organization

The analysis organization IS The analysis organization IS NOT

An organization; it has people and structure A quality assurance or independent verification

. e and validation (IV&V) organization
A domain-specific infrastructure () org

A research laborator
Separate from the developers but works closely y

with them A management infrastructure

Variable in size (driven by the size of the An audit organization
development organization)

SEL-95-102 8

The ultimate goal of a software process improvement organization is to understaegeatid
successes and to understand and avoid failures. Ther#feresoftware processiprovement
organization’s processes and operations must be based on solid and objective development
experience. Thus, a measurement-based approach is needed for project management, evaluation,
and decision making. Software measuses applied to process, productand resources.
Measurement is one of the basic tools available to the software pgropesgement organization

for performing its tasks and tmanagement for controlling amehproving the efficiency of the

whole infrastructure.

2.2 The Software Process Improvement Approach

The goal ofany NASAsoftware process improvement program is continual process ahacpro
improvement. To attain this go#ihe program uses a process appraaetsisting of threenajor
phasesUnderstanding AssessingandPackaging These phases atentinuallyexecuted in any
development environment within the organization. Figure 2-2 illustrates these three phases.

/—' PACKAGING
Capture improved techniques as a part of modified process, e.g.,

ITERATE . Incorporate inspections into development standard
__— ASSESSING . Develop inspections training program
Impr(;\gzrrent Determine the impact of a change, e.g.,
/ « Does object-oriented design produce more reusable code?
UNDERSTANDING « Do inspections result in lower error rates?

Build a baseline of process and products, e.g.,

What development techniques are used?
What is the unit cost of software?

What types of errors are most common?
How much reuse occurs?

Continual improvement over time P

Figure 2-2. Three-Phase Approach to Software Process Improvement

The remainder of this section describes these three phases in more detail.

2.2.1 Phase 1—Understanding
ITERATE |PACKAG|NG In the Understanding Phasehe organization’s process

,4306‘"'" ASSESSING and products are characterized and high-level goals for

— improvementreidentified. Thepurpose othis phase is

to continuallycapture the characteristics of the software
process and productsithin the project organization and produce modelstionships, and
general descriptions of the process pratlucts.Understanding is the required starting point of
the overall process improvement sequence, and it never ends, because changde/agadbe
understood and characterized. Withthis baselineof the process, products, aadvironment,
no basidor change or improvement exists. A determination for change and improvement can be

made and quantitative goals set only when the characteristics of the ongoing process and products
are captured and understood.

9 SEL-95-102

Understanding is the phasewvitnich the softwardaseline is establishehd is the mogtritical

phase of themprovement approach; however, this phase is often ignored. The developers and
analysts characterize the organizational environndestribing it in terms of relevant processes
and models. The environment is characterized by uauagable data, bothobjective and
subjective. The existingrocesses and products are characterizedraled through measured
experience. Based on the baseline findings, a speaifanization cardentify high-levelgoals for
improvemen{e.g., cut costmprove reliability).Each organization must determine what types of
improvement goalgre most important in ilecal environment. Having a baseline allows the
organization to set goals that are based on the need for specific self-improvements.

The baseline othe software organization is captured in the forrmotlels(e.g., cost moels,
error models), relationshipge.g., relationship between testing time amador density), and
characteristicge.g., what standards are used, wieahniques are used fperforming specific
activities). Although the type ahformation collected irthe Understanding Phaseresatively
generic and common across software organizatspegific characteristiahat arederived from
the particular goals and needs of the software organizations sheayd aeconsidered. These
specifics are product characteristics such as cost, sizerransl,and process characteristgisgch
as effort distribution and resources usage. Understanding smelronment-specific
characteristics is necessarythat the organizationan plan improvements the context ofocal
goals. Forinstance, if the organization’s higévkel goal is to improve productivity, it must
understand (baseline) itsirrent productivityrateand process argroductcharacteristicsUsing
the baseline aghe basisfor improvement allowthe organization to sepecific, quantitative
goals. Forexample,rather thanstriving to simplyreduce the error rate, arganization can
establish a more specific, measurable goal of reducing the error rate by 50 percent.

Figures2-3 through 2-5 show sonbaseline information recentyathered for NASA as @&hole
(Reference?). During thebaselingperiod, NASA had developed more thamilion sourcelines
of code (MSLOC) and had over 160 MSLOC in operational usagebddedine establisheatiat
nearly 80 percent of NASA'’s software work is contracted to industry and educational institutions.

Figure 2-3 shows thélistribution of NASA softwarelomainsfor operational softwarddission
ground supporand generadupport software wertound to be the largest and most prevalent
software domains, accounting for almost 60 perceml MASA software. Administrative/IRM
software was the next largeimain, accounting for almost 20 percent of NASA software. The
science analysis, research, and flight software domains were much smaller in size.

Figure2-4 shows the amount of resour®eSSA invested in software. As indicated, more than
10 percent of NASA'’s workforce spetite majority of their time(i.e., more tharhalf time) on
software-related activitiegicluding software management, development, maintenamnaajty
assurance, and verification and validation. NASA investethm@ificant amount of manpower
budgetary resources in software.

SEL-95-102 10

Simulation, Research
(6 MSLOC)

()

(10 MSLOC)
Science Analysis
(20 MSLOC)
13%

Mission Ground Support
(59 MSLOC)
37%

General Support
(35 MSLOC)
22%

Figure 2-3. NASA Operational Software Domains

Software Versus Total Costs Software Versus Total Staffing

$1 Billion Software
Software Personnel
Costs 8,400

$13 Billion
Nonsoftware
Costs /

Figure 2-4. NASA Software Resources

Nonsoftware
Personnel
71,300

Figure 2-5 shows thelistribution of languages used for software in operations and under
development. As shown, the use of FORTRAN, along with COBOLo#mer languagege.g.,
Assembler, Pascal), hdscreasedignificantly; presumablthese languages doeing replaced by
C/Ct*. The use of both C/C and Ada has increased dramaticathpugh Ada use isiot as
widespread as C/C. Nevertheless, FORTRAN developmensti substantial, indicating its use
will likely continue for some time.

For aglobal-levelorganization, such as NASA as a whole, lbaseline is necessarily at a much
more generdevel than in organization®cally implementinghe software processiprovement
approach. Mosmnodels, for instance, would make seonsly with respect to particulatomains
(e.g.,flight software oradministrativesoftware), not for thédgency as a whole. Local models
(e.g., costaindreliability models) can be developed &pecificorganizations to help engineer the
process on ongoing and future projects.

11 SEL-95-102

50

40

30

% 0 45%

6% 2% 35%
10
‘ —
FORTRAN Cobol C/C++ Ada Other

Operational software |:|

Software under development -

Figure 2-5. NASA Language Preferences and Trends

The following examples illustrat¢he Understanding Phase abeal organizational level. The
examples use data from a major software organization at NiAe8Aas continually collected and
studied developmeulata forgeneralsupportsystems. Theata represent over 5@@aff-years of
effort and arefrom over 25systems completed ithe mid- andlate- 1980s. These data were
extracted andnalyzed to buildhe basic understandingarametersncluding two ofthe most
basic, yet often overlooked, characteristics of software: effort distribution and error profiles.

By collecting data readily availableduring the development process, the organizag@ned
understanding of where the development effort for the software procedseivgsexpended—
among design, coding, testing, amither activities (such as training, meetings, etc.). Although
extremely easy to obtain, such basic information is often ignored.

Example 1: Understanding Effort Distribution

Figure 2-6 shows the distribution of effort by tifigpically, 26percent of the total effort
is spent in the design phase, that is, the period from onset of requiranadyds through
critical design review (CDR); 3@ercent in the code phase, thgt from CDR through
code completion and unit testing; and témaining 37percent in the tegihase, that is,
integration, system, and acceptance testing.

Viewing effort distribution from a different perspective, Figure 2-7 brekivgn specific
development activities, showing the amountirok attributed to each agported by the
individual programmers rather than in a date-dependent mahimerughout the project,
programmerseport hours spent in these categoridge analystexaminethe developer-
supplied informationacross many projectsand then determine thpical effort
distribution for this particular organization. As this figure shows, 23 percent of the
developers’ total effort is spent design; 21percent in code; 30 percent in test; and 26
percent in otheractivities including training, meetingslocumentation (e.g.system
descriptions and user’s guides), and management. Such basic information can then be used
to generate local models, such as a “cost by activity” model.

SEL-95-102 12

Date Dependent Programmer Reporting

Design

Test 26%
37%

Figure 2-6. Effort Distribution by Time Figure 2-7. Effort Distribution by Activity

Example 2: Understanding Error Profiles

A secondexample otthe characterization performed in the Understanding Phase is found
in error characteristics. Based on teame projectsor NASA ground systemgrror

profiles based owover 500 reportedievelopmenerrors are depicted iRigures2-8 and

2-9. These data provid®mmeinitial insight intothe erromrofiles, which inturn canlead

to a more structured approach to addressing certain error characteristics in future systems.

Figure 2-8 shows the breakdown alf errors byclass. This figure shows what types of
errorsexist and how they are distributed across classeslaasesare defined by the
specific organization.

Figure 2-9 depicts how the software errors found ireawironmentare distributed into
different classes based on their recognized origin. In this exampfeeréent of errors
originate from requirements, 20 percent from design, 20 percent from coding, and 10
percent fromclerical sources. Theverall error rate forthis organization wasix errors

per thousand source lines of code (KSLOC).

Computational Implementation

Initialization
Require-
ments
Design
Data
Logic/
Control
Clerical
Interface
Figure 2-8. Error Distribution by Class Figure 2-9. Error Distribution by Origin

Basic informatiorabout errorsan lead tdhe development of error-related modsis;h
as error detection rat&igure 2-10 shows therror detection rate foiive projects of
similar complexity irthe same environment. This organizatigpically sees therror rate
cut in half each timethe systemprogresses to the nelite-cycle phase. This type of

13 SEL-95-102

information leads tahe important step of producimgodelsthat can be used oensuing
projects to better predict and manage the software quality within the different phases.

6 <

g] -~

— x S

o 4 x x

7 37

e 5 —

L N x x X X x x
1 x | X X x
0 Code/Test System Test Acceptance Test Operations

Figure 2-10. Error Detection Rate
Example 3: Understanding Other Models and Relationships
Figure 2-11 provides examples of other models and relationships that have been developed

as useful profiles of a specific environment. Reference 3 disctlssses and other
relationships and how they can be applied.

Effort (in staff-months) = 1.48 * (KSLOC) 0.98
Duration (in months) = 4.6 * (KSLOC) 0.26
Pages of Documentation = 34.7 * (KSLOC) 0.93
Annual Maintenance Cost = 0.12 * (Development Cost)
Average Staff Size = 0.24 * (Effort) 0.73

Figure 2-11. Sample Process Relationships

These examplesare typical products of the characterizatioactivity performed in the
Understanding Phase. Thaye based on actual data collected in a produetwironment and
represent the situation befofer at aspecific milestoneof) an improvemenhnitiative. The
examples are domain-specific and, although essential for understanding a specific environment and
controlling improvement, they aret universally applicable t@ther domains. Theconcept of

building the understandin@paseline) is applicable tall domains;however, thespecific models
produced and organizational goals set may not be.

2.2.2 Phase 2—Assessing

ITERATE
—>

packacING | In the Assessing Phakse specific objectives for
improvement are set, one or momhanges are
introduced into the current process, and the changes are

then analyzed to assess their impact on both product and

Goal

/4
| UNDERSTANDING

ASSESSING

1 within the context of process improvemerihe term “assessing” refers to an evaluation ofeffext of
introducing a change. It should not benfused withthe usage of the term assessment as regards CMM
organizational process capability evaluations.

SEL-95-102 14

process. Changeay include introducing anethod, tool, omanagemenapproach.This phase
generally isthought of as thexperimentaktep inwhich some defined change tflte process is
evaluated against the baseliae changes are studied throsplecific experimentsonducted in
selected projects.

Experimentationis defined aghe steps taken to set altjees based on a project’s software
improvement goals fathe specific assessmentitroduce some change to thaselineprocess;
collect detailed information dse changed process (i.e., the experiment) progresses; compare the
results of theexperiment againshe baseline values establishedhe Understanding Phase; and,
finally, determine if the change that was introduced met the objeastablished for the
assessment/experiment.

The choices made in this phasee driven bythe characteristics and high-level orgéaional
goals identified inthe Understanding Phase. Experiment objectiveseatreandyjuantified
according to the data collected in theseline. Reference 4 provides information @neahanism
[the Goal/Question/Metric (GQM) paradigm] fdefining and evaluating aet of operational
goals using measurement orsfEecificproject. The questions addressed in Alssessing Phase
depend on both theverall goal andhe chosen process changer instance, if a cycle time of 2
yearsper system has been measumer the last 10 years,pmssible goal might be to decrease
thecycle time to 18 monthsver the course of the nes¢veral years. Another organization may
wish tofocus aspecific experiment on improvingliability (i.e., reducingerror ratesand nght
introduce softwarénspections tattain that goal. Thaspections’ assessment would answer the
guestion “Does the use of software inspections result in the production of refiatde
software?”

To carry out the assessment processgral basic requirements musfidglled. First, somekind

of baseline onorm must exist againgthich the assessmedatacan be comparedhis baseline

is provided by the Understanding Phase. In some cases, however,ifdotineation is needed to
provide a reasonable comparison base forAgsessing Phasér example, experiendevel of

the developers olevel of receptiveness to change. Second, the organization must prioritize
changes and select the oneswdmch it will focus. Althoughany organization wouldtertainly
aspire to attain all improvement goals at once, the assessment of changes through experimentation
proceedslowly. The effect ofoo manyconcurrent changes cannot be controlled, anaviiate
assessment would be compromised. Additional complexities weitish the Assessing Phase
becauseessentially allmeasures of change are coupledotber measuresFor instance, to
improve reliability (i.e., reduce error rates), casight beadded to the development process.
Third, the organization must statess goals(e.g., fewer errors, higher productivity) in a
measurable waye.g., thenumber oferrors pefrKSLOC should be less thahO; thenumber of
statements developed and tested per Bbould be higher tha8.5). Although achieving the
measured goal is a good indicator of successsubgective experience tie developers must
also be considered in the assessment.

Examples 4 and 5 illustrate specific assessments performed within NASA.
Example 4: Assessing Inspections

Formal inspectionare technical reviewshat focus on detectingnd removing software
defects asearly in the developmeriife cycle aspossible. The goal of introducing

15 SEL-95-102

inspections in one NASA organization, JPL, was to increasgquiigy of the following
products of software systems: software requirements, architectural design, detailed design,
source code, testlgns, andtest procedures. Byloing so, theoverall quality of the
software would be improved amtbst would be reduced by detecting defeetmly
(Referenceb). In theUnderstanding Phase, thest to detecandfix a defect found in
formal testing was determined to be between 5 and 17 hours (the hkedettt beraiced,

found, fixed, andetested). In théssessing Phase, inspectiavasre introduced and their
impact measured. Because inspections were introciardinthe developmeriife cycle

when mostproducts ar@echnicaldocuments, the reporting met was number of pages
rather than estimatdithes ofcode. AsFigure 2-12 shows, laigher density of defects was
detected irearlier life-cycleproducts than in later ondsot only was theoverall software
quality improved by reducingework during testing and maintenand®yt costs were
reduced byfinding defects earlier ithe life cycle. Onaveragefinding andfixing defects

found during inspection®ok 1.1 hoursand0.5 hoursyespectively—a significant savings
compared to the previous range of 5 to 17 hours for both. Inspectivassubsequently
been introduced at other NASA centers, and their assessments have also been favorable.

The importance of the Understanding Phase cannot be overemphasiaexdexamplewithout

the established baselinghe assessment would have bperely subjectiveyelying solely on

opinions of peoplavithin the organization as to whether inspections helgidd nothing, or

perhaps even hindered the development process. Changes introduced by the software organization
to address some goal of improvemeiiit always have multiple impactsat must be considered,

such as the addexstand overhead ohaking a change. In this example, several measures, such

as additionatost,development time, anithal defect rates, must kanalyzed to ensure that the

full impact of the change is understood.

Not all assessments will be positive. The assessment resigg show positive impact, no
change, or even negative impact on the factors being examined.

SEL-95-102 16

N

\ —<— All defects
—T—Minor defects*
~=@-=Major defects*

=
o

U T T N T TN T T T A Y A

[

Average Number of Defects
Found per Page
o
o

Requirements** Architectural Detailed Code**
Design Design

INTERMEDIATE SOFTWARE PRODUCTS

* Major defects cause systems to fail during operations or prevent systems
from fulfilling a requirement.
Minor defects are all other defects that are nontrivial. Trivial defects
include grammar and spelling errors; these were noted and corrected but
not included in this analysis.

** Statistical tests showed a significant difference between the defect
densities found in requirements and code inspections. This analysis is
based upon a sample of 203 inspections performed on six JPL projects.

Figure 2-12. Assessing the Impact of Inspections
Example 5: Assessing Cleanroom

Another sample assessmeithe use of the Cleanroom process (Referéhceasalso
provided. Cleanroom is a software process developed by Hplilsn (International
Business Machineshat focuses on producing error-free softwamnd results in @roduct

with certifiable reliability. The Cleanroom process was selected to attain the goal of
improving thereliability of deliveredsoftware withoufpenalty tothe overall development
cost. Significant process changeascluded using formal code inspections, applying the
formal designconcept of box structuresising rigorous testing approachesiven by
statistical methods, and providing extended training in softeagmeering disciplines
such as design by abstraction.

In 1987, thefirst Cleanroom project was selected, the team trainedgxerimentplan
written, and the development process agrdduct meticulously measuredProcess
impacts were observed at sevdeakls, including increasegffort spent in design and a
different coding activity profile. Figure 2-13 illustrates these impacts.

This first experiment (Reference 7) resultedmpressiveproductgains inboth reliability

(38 percent) and productivity (54 percent) when compared w®ithting baselines
(Figure 2-14). However, because this first project sraall [40,000 developedines of

code (DLOC)],two additional projects were selectading a refinedset ofCleanroom
processes derived from the first project’'s experiences (Reference 8). These later projects
provided additional evidendbat components of théleanroom process weedfective in
reducingerror rateswhile maintainingproductivity for smaller projects, but the larger
project had amaller reliabilityimprovement (14 percent) with a 23 percent reduction in
productivity.

17 SEL-95-102

Distribution of All Activities: Code_Activities Only:
Slight Impact on Design and Code Substantial Process Impact

Baseline Cleanroom Projects Baseline Cleanroom Projects

ode

i

Design Reading|
33% [20% ing | writ

80%

Figure 2-13. Assessing the Impact of Cleanroom on Process

Figure 2-14 illustrates thenpact ofthe Cleanroom process on fm®duct. As a result,
key Cleanroontoncepts, such as focusetpections angrocess training, havieeen
infusedinto the standard organizational process,dbér aspects are undeing further
analysis until the cost differences are more fully explained.

Errors per KDLOC Productivity (DLOC per day)
40

70 26

[] Baseline (1982-1984) . 2nd Cleanroom (23 KDLOC, 4/90-12/91)
. 1st Cleanroom (40 KDLOC, 1/88-9/90) . 3rd Cleanroom (160 KDLOC, 2/90-6/92)

Figure 2-14. Assessing the Impact of Cleanroom on Product

Again, eventhough the changenight result in theachievement oftthe original goal, other
parameters must Bmnalyzed to ensurhat thefull impact ofthe change ianderstood. If the
assessment of Cleanroom showed that the goal of imprelalility was met but other factors
suffered significantly (e.g., productivity drasticallydecreased andost increased), theverall
assessment mighot have beefavorable. It might be totally acceptabledoe organization to
increasecost significantly to achievemproved reliability; for another, th@ame circumstances
might be unacceptable. It isiportant to understand tHall impact of anychange within the
constraints of the specific organization.

Many other assessments have been performed within NASA. References 9 thrdetghl diher
sample assessments involviAda, object-oriented technology QO), softwaremodularization,
and testing techniques, respectively.

Assessing ighe second step of tlmprovement paradigm. Whether resiudie favorable or
unfavorable, each assessment must be followed by thestepdsome form of packaging. The
next section describes the Packaging Phase.

SEL-95-102 18

2.2.3 Phase 3—Packaging

ITERATE PACKAGING In the Packaging Phasechangeghat have produced
ﬁa' P [assESSING satisfactory results and shown measurable improvement
|UNDERSTANDING are institutionalized and incorpated into the
mainstream othe organization. Durinthis phase, the

analysts develop new modesdandards, and training materials based on what has been learned
during theAssessing Phase. Tipeoducts developed by the analysts st@ed by the support
staff into a repository (i.e., an experience base)amgrovided to the developers upon request.
Packagingtypically includes standards, policies, and handbooks; training; &oals. For
methodologies or techniquésat do notshowany favorable impaaturing theAssessing Phase,
results must still be captured aathived (i.e., packaged) fite corporatenemory is continually
enhanced. This packagimgay include reports or papers that angaintained inthe corporate
repository. The results of the packaging phasefeateback tahoseindividuals involved with
baseliningprior to the next related project or experiment. Thus a particular technology can be
assessed throughultiple experiments, eaanebuilding onthe packaged results of the previous
experiment(s).

Packaging requires a clear understanding ofntipact of a specific technology ahe software
process and products. Theimiate measure of success is, in general, an improved software
product. Thereforeinstitutionalization of change must be substantiatedeligble data on the
products resulting from the process. Standargslicies, process characteristics, and other
“packages” are mogtffective when they refle@mpirically derived evaluations of technologies
and processes that are suitable and beneficial to the specific organization.

The majorproduct of thepackagingstep is the organization’s standargslicies, and training

program. The software process must be developed to respond to the general needs of the

organization and is drivegorimarily bythe experiences and needs of the developers. &wery,
element ofthe standards neaewt have beenssessed, but some rationale naxgst for their
inclusion.

Examples 6 and 7 illustrateow the experiences from the previous assessitterdmples 4 and
5) may be (or have been) packaged.

Example 6: Packaging Experiences With Inspections

Consider theexample of inspections. Ithe Understanding Phase, the organization
characterized theost to detecandfix defects. Inthe Assessing Phase, inspectionsre
introduced to increase software quality and to redosé bydetecting defectsarly in the

life cycle. The organization then assesgedimpact of inspections and determingt

the goals of thexperiment had been achievedthe Packaging Phase, the organization
needs to determine how to packagdatsrable experience with inspections, perhaps by
modifying its standardge.g., development manual) to include inspections or to train its
personnel tceffectively use inspections. Figure 2-15 depitis example of inspections
with respect to the three-phase processrovement approach. Process charmgmsur,
assessments are made, amgrovementsare identified. Organizationastandards then
need to be upgraded to reflect the improved procegsarasf the standardiay of doing
business within the organization.

19 SEL-95-102

PACKAGING
//_- « Refine training
« Revise development manual

ITERATE « Incorporate inspections into
ASSESSING standard development process
GOAL ! « Introduce inspections, train personnel, use checklist forms,
(Find more defects and etc.
find them earlier) » Assess impact
Hours to detect Baseline With Inspections
and fix defect: 5to 17 1.1 (detect) + 0.5 (fix)
UNDERSTANDING « Assessment favorable; goal met

Determine cost to detect and fix defects: 5 to 17 hours to detect and fix defect

TIME e

Figure 2-15. Packaging Experiences With Inspections

Example 7: Packaging Experiences With Cleanroom

Finally, consider the Cleanroomxample. The goal of introducing Cleanroom was to
improvereliability without incurring acostpenalty. In the Understanding Phasest and
reliability rates were determined. In tAssessing Phasthe first Cleanroonexperiment
was performed, anonpressive gainsvere @hieved inboth reliability and productivity.
Experiences of this first experiment were packagedhéen form of updatettaining
materials and a handbook detailing refined Cleanroom gsese(Reference 13); these
products were then used on subsequent Cleanroom experiments.

The three steps of thenprovement approach werepeated foradditional Cleanroom
experiments. In the Understanding Phaseor and productivity rates from the
organizationabaselineand thearly Cleanroom experimentere established for use in
later comparisons. In thAssessing Phasdhe results of the lat@xperiments were
evaluated against both th@aselineand early Cleanroom experiences. Experiences from
these later experiments were also incorporated timo tailored Cleanroom process
handbook and training materials. Some key Cleanr@omcepts, such as focused
inspections andorocess training, have been packaged imfgsed intothe standard
organizational process. Other aspects of Cleanroom are undergoing duglysis until

the cost differences exhibited in the larger project can be follyrexplained. Figure 2-16
depicts the packaging of the experiences of the Cleanroom experiments with respect to the
process improvement approach.

SEL-95-102 20

e

« Refine training
ASSESSING « Refine process handbook

ITERATE

« Introduce Cleanroom, train personnel

GOAL « Assess impact (exp. = experiment)
(Improve reliability) Baseline 1stExp. 2nd Exp. 3rd Exp. Assessment
Reliability 7.0 4.3 3.3 6.0 Better
Productivity 26 40 2.6 20 Mixed
UNDERSTANDING « Assessment favorable for smaller project, mixed for larger

« Determine reliability rates: ~ Baseline = 7.0 errors per KDLOC First exp. = 4.3 errors per KDLOC
« Determine productivity rates: Baseline = 26 DLOC per person per day First exp. =40 DLOC per person per day

TIME -

Figure 2-16. Packaging Experiences With Cleanroom

Even if later assessments of Cleanroom are favorable, the process chamge vél
mandatedmmediately to evenproject. Asignificant change like Cleanroomould be
evolutionary, and additional projects would lentified asthe experience base is
broadened. Experience has shaWwat significantprocess changes cannot daopted or
mandatedquickly; they must evolve. It is th@ask of the analysts andevelopment
managers to jointly plathe evolutionary process change for changesgagicant as
Cleanroom.

2.3 Domains for Software Process Improvement

This chapter has discussed tsteucture and three-phase approach needed for software process
improvement. The concept of softwademain is also critical tgrocess improvement. The
organization must know the scope which process improvement Iseing applied. Igprocess
improvement being appliegtross the entire organization or tepecificsubset such asdaision

or department? Understanding domains is also important to facilitate sharing of experiences within
and across domains.

The software process improvement organization gathgnghesizes, and packages experiences
from a particular domairfor usewithin the same domain. Whatevehe domain is, the
organization first develops amderstandingof its processes and products. It thHegats the
domain asthe “whole world” for applying process change arabksessingthe impact of this
change. The results and lessons are plaegkagedand theinformation is applied to ongoing and
subsequent effortwithin that specific domain to improvéhe quality of the softwardoeing
produced. Transfer afformationacrossdomainsmay beachieved, especially wheéhe domains
have similarcharacteristics. However, tipgmarygoal is to improve softwangithin the specific
domain.

Domain analysis, or domain definition, is usually describetieprocess of recognizing standard
concepts, functionalities, and architectural characteristics withinsaftware development
applicationarea.Domain definition igmportant to facilitatgoroduct reusend improveboth the
productivity and quality othe final products(Reference 14). Often domaamalysispertains
strictly tothe reuse of code. For software prodegsrovement, domaianalysis isiot limited to
any one type of artifact (i.e., code);fécilitates the reuse odll experience, includinghat
embodied in code. For software process improvement, the dimha@mcesthe breadth tevhich

21 SEL-95-102

analysis applies; it influencaébe scope of packaged results (e.g., standpdiisijes, training,
tools); and it strongly determines to what extany informationexperience, odatacan be
shared and reusedAdditionally, it dictates how large a software processprovement
organization can be.

No directmechanism exist®r defining domains oorganizational characteristics. Historically,
the definition of a software domain hasmost often been associated with an organizational
structure: a singldomain is either an entire organizati@g.,NASA) or a subset of aexisting
organization (e.g.NASA field center, branchgdlivision, project, departmentDomainsare not,
however,necessarily linked to organizatiorsituctures.They may bedefined according to the
factors that characterize tlievelopment processes, technologmsducts, constraints, goals,
and risks associated with the projediifferent classes of projectsay exist within one
organization (e.g.real time versus non-real timiight versus groundystems)hat might be
treated as individual domains or together as a single domain. The development processes used and
the overall process improvemerstructure are most oftestefined bythe managemenstructure
that is in place.

Once domaingre understood andentified, commorprocesses, standards, and experience may

be shared with confidence by various software organizategs individual NASA projects or

field centers)within a broader organizationatructure (e.g., thé&gency as avhole). Because
organizations can share data, information, and lessons learned, they can improve faster and further
than they could in isolation.

Domains have no size breadthlimitations. For examplethere is someommonalityfor “all of
NASA” to be considered ondomain;there is morecommonalityfor ‘all of Johnson Space
Center” to be considered ondemain; andhere are somdifferences between Johnson Space
Center andLangley Research Center potentially resulting in the#ing considered different
domains. The point ighat any organization can belassified asone domainbut as the
organization becomes broken down into mepecific andsmaller elementsnore parameters are
relevant to the morspecific, smaller domairthan the larger organizatiorddmain. Figure 2-17
depicts some potential domaingthin NASA. Some domainsnight be tied to organizational
structures (e.gindividual field centers)while othersmight pertain to application domaifs.g.,
mission support software)Within any domain ishe potential fosubdomains to exist. For
example, the mission support softwdoenmain might béroken down further into ground support
software, flight software, and scientific software.

Reference 14 describes activitiesdtte inanalyzingand defining NASA domaingor the reuse
and sharing of experience.

The baseline has been establisl{thase 1—Understanding), change has been introduced and
improvements identifieqPhase 2—Assessing), and the experiences have been packaged in a
reusable manner (Phase 3—PackagiNgy theexperiences have to be shared and incorporated
throughout the organization. Thesgperiences can be sharmat only within specific domains,

but occasionally everacross domainsBut with whom? Determiningthe dmain-specific
characteristics is necessary igentify who can share thaformation and experiences. For
example, standardge one form of packaged experiences. If standards areattopted across
domains, it is important to understatite characteristics thodemains have in common.
Domain-specific characteristics need to be identified tortastandards for the needs of a

SEL-95-102 22

particular domain. Likany form ofpackaged experiences, standards should evoketime. To
what domains dt¢he standardapply? Answering thiguestion extracts curremtformation from
the domains so that standards can be updated to reflect recent experiences.

DOMAIN: NASA

DOMAIN: Mission Support DOMAIN: Administrative DOMAIN: Individual Field Center
DOMAIN: Ground Support [e.g., DOMAIN: Information |DOMA|N: Goddard Space Flight Center
Deep Space Network (DSN), SEL] Resources Management

(IRM) |DOMAIN: Jet Propulsion Laboratory

DOMAIN: Flight (e.g., Space Station,
Shuttle flight software)

DOMAIN: Scientific [e.g., Earth |DOMAIN: Langley Research Center

Observing System (EOS)]

|DOMAIN: Marshall Space Flight Center

|
|
DOMAIN: (etc.) [DOMAIN: Johnson Space Center |
|
|
|

DOMAIN: (etc.) [DomAIN: (etc.)

Figure 2-17. Examples of Potential Domains Within NASA

Understanding domains and domain-specific and domain-independent characteristics is important
for sharing information and experiences. Withalgfining domainsand understanding the
characteristicshat make themsimilar to and different fronothers, thefull benefits of sharing
experiences cannot be achieved.

2.4 Comparison of Two Software Process Improvement Approaches

This section addresst®e unique aspects of NASA'’s software process improvement approach by
comparing it with another particular approach, the SoftvEargineering Institute’{SEI’s)
Capability Maturity Model (CMM) (Reference 15)Both approaches share thmderlying
principle of continual, sustained software process improvement.

As discussed earlier, the NASA software procesgrovement framework consists of two
elements:

. An organizationalstructure (Section 2.1¢onsisting of developers, analysts, and a
support staff

A three-phase approach to process improvement (SétRofigure 22), thatis, the
continual understanding, assessing, and packaging of organizational experiences

These two elements allow an organization to continually impghemguality of software products
and processes within a specific domain.

The key points of NASA’s process improvement approach are that
. Process improvement is driven by internal goals and local experiences.
. Each domain is dealt with in a different way according to its specificity.
. The environment is characterized according to organization-dependent measures.

. No assumptions are made about best practices in the process area.

23 SEL-95-102

. The ultimate measure of succesthsimprovement othe product oservice delivered
by the organization.

The CMM is awidely acepted benchmark for softwaprocessexcellence. It provides a
framework for groupindcey software practices intfive levels ofmaturity. A maturitylevel is an
evolutionary plateau on the patiwardbecoming anature software organization. Tfe-level
model provides a defined sequencesteps for gradual improvement and prioritides actions
for improving software practice.

Within the CMM, an organization strives to mature woatinually improvingprocess. To do so,
the organization must advance through the following maturity levels defined by the SEI:

. Level 1, Initial. The software process is characterized as ad homecakionally, even
chaotic. Few processes are defined, and success depends on the efforts of individuals.

. Level 2, Repeatabldasicprojectmanagement processa® established torack cost,
schedule, and functionality. The necesgancesdliscipline is in place toepeatearlier
success in projects with similar applications.

. Level 3, DefinedThe software process for batimnagement and engineering activities
is documented, standardized, and integrated into an organization-wide software process.
All projects use a documented and approved version of the organization’s process for
developing and maintaining software.

. Level 4, ManagedDetailed measures tie software process apdoductquality are
collected. Both the process and productscar@ntitativelyunderstood and controlled
using detailed measures.

. Level 5, OptimizingContinual process improvementisabled by quantitative feedback
from the process and from testing innovative ideas and technologies.

Figure 2-18 depicts the CMM procesaprovement paradignthe NASA software process
improvement approach is also repeated in that figure.

Differences betweethe CMM and the three-phase NASAprovement approachre described
in four areas: the goals, initial baseline, initial analysis, and improvement approach.

1. Goals Each organization must set goals for what is to be improved.

CMM: A generalized, domain-independent goal focuses on process. Every organization
strives to improvethe software process andtimately, evolve to a continually
improving, optimizingprocess (Maturity_evel 5). Organization A and Organization B

both try toimprove their processes and becdmegel 5 organizations. In progressing to
higher levels, organizations expect to reduce risk and generate better products.

NASA Organizations focus on improvimyoducts.Specificgoals, howeveryary from
organization to organization. Organizationmay attempt toimprove reliability by
decreasingerror rates.Organization Bmay strive to decrease the development cycle
time. Goals arelomaindependentWithin the framework of the CMM, organizations
usingthe NASA approaciay progress tdigher maturity leveland eventually become
a Level 5.

SEL-95-102 24

The CMM goal is domain independent and generalized. The CMM focuses on
improving the software process. NASA goals vary from organization to organization,
that is, they are domain dependent. The underlying goal of the NASA approach,
however, is to improve the software product.

(<)
N
&

CMM Process Improvement Paradigm NASA Software Process Improvement
Paradigm
o
& o 5-OPTIMIZING
& @4@ Change management, PACKAGING
N defect prevention /— = : y
o apture improve
-o‘é}\ 4-MANAGED ITERATE E i g f
& Detailed measurement ecnniaues & a part o
<t etai u o
ASSESSING the modified process
& Improvement
& & 3-DEFINED goal))
& & Documented systems, { Determine the impact of a change
¢ training UNDERSTANDING
>
<@
R (2-REPEATABLE) Build a baseline of process and products

Basic project management

1-INITIAL) . . -

Individual efforts Continual improvement over time

2.

Figure 2-18. CMM and NASA Software Process Improvement Paradigms

Initial Baseline. Each organization must establishasic understanding (baseline) of its
current software product and process.

CMM: Baselining is achieved by performing an assessmeheairganization’s process.
This assessment is made against well-established criteriathandorganization is
baselined at a certain maturity level. These criteria enable compatossdomains
because each organization is assessed agairsdrtieecriteria. The same elements are
examinedor every organizatiore.g., Does it have goatandards? What is its training
program like? How is its measurement program conducted? Basedexathieation of
these criteria, the organization is baselined at some maturity level.

NASA Baselining involvesunderstanding the process gmaduct of eachndividual
organization. This baseline is domain dependent. Unlike the CMM, no common yardstick
exists enablingcomparison across domains. Some factors need to be characterized
(baselined) byall organizations, such as howuch software exists, what process is
followed, what standards are used, what is the distribution of effort difessgcle
phases. Other factors of interest depend on the goals of the organization. Organization
A, for example, wouldvant tobaselingts error ratesywhereas Organization B needs to
determine its development cycle time.

The CMM baseline is process based and established against a common yardstick. The
NASA baseline is domain dependent and is both process and product based.

Initial Analysis. Changes are introduced toake some improvement. Aanalysis
(assessment) of the change must be made to determine if improvement has occurred.

25 SEL-95-102

CMM: Assessment of change is accomplished by reassefising process. An
organization is baselined at one level, makes changes to try to attain delvigihand is
then reassessed to determine if it has progressed to aleetieBuccess is measured by
process change. The ultimate succesghiangingthe processntil it continually
improves. The organization then achietles highest maturitievel rating, alLevel 5.
The measure of success is domain independent, beslhosganizations are measured
against the same criteria (i.e., “a common yardstick”).

NASA Assessment of change is domd@pendent. An improvement goakist,change

to the process made, change to the procesgraddictexamined and verified, and the
effect of change evaluated against thiginal goal. Success is measured bydurct
improvement and is determined basedtlmn goals of thendividual organization. The
organization attempting to improve iiability would institute a change, such as the
Cleanroom process, to try to reduceertor rates. It wouldhen assess the result of the
experiment based on its original goals.

CMM analyses and assessments are based on its common yardstick. NASA analyses and
assessments are domain dependent, and are based on goals defined by the individual
organization.

4. Improvement Approach Approaches to improvemerdre defined and driven by
different factors.

CMM: Changes made tihe organization’s process aheven bythe CMMcommon
yardstick. If an organization is baselined at some lewsillithange elements necessary
to get to thenext maturitylevel. If an improved measurememtogram is needed to
advance to another maturitevel, the organization will focus ochanging its
measurement program to meet the CMM'’s criteria. ilfprovement approach solely
process based. The CMM’s common yardstclables a commormadmap toward
continual improvement.

NASA Organizational experiences and goals drive change. Chantes pvocess are
made in anattempt toimprove the product. Eacdomain mustidentify the most
appropriate process changes to achieve its product goals.

The CMM’s common yardstick drives change; its improvement approach is process
based. NASA'’s organizational experiences and goals drive change; its improvement
approach is product based.

Table 2-3 summarizes the differences between these two process improvement approaches.

Despite their differences, both approaches sudigeistvery software organization shouleploy

a program for the continual, sustainegprovement ofthe overall quality of itsproducts and
processes. Thmain difference isthat, whereas theypical process improvement programs are
based on the assumptithatimprovements tdhe software process maturity valentually elicit
improvements to the product quality, NASA’s software process improvement appitoaately
focuses on improvement the productind service quality, although achiewbtbugh process
improvements.

SEL-95-102 26

Table 2-3. The NASA Software Process Improvement Approach Versus the CMM

Area NASA Approach CMM Approach
Goals Focus on improving product Focus on improving process
Goals vary across organizations Generalized goal (improve process, get to
Level 5)

Domain dependent

o Domain independent
Success = better product; specific P

measures of success vary from Success = better process and higher
organization to organization level; common measure of success
Initial Understand process and product Perform assessment of process
Baseline S . -
Common yardstick is basis for initial
baseline (what is the maturity level?)
Initial Change process to improve product, Change process to advance to a higher
Analysis reassess process and product level, reassess process (what is the
— o maturity level now?)
Organization specific, no way to compare
across organizations Can compare across organizations
Improvement | Product based Process based
Approach o . . .
Organizational experience and goals Common yardstick drives change

drive change

The NASA approach assumésat every development organization must first understand its
process, products, software characteristics, and goals Iseleatingthe set othangeghat are
meant to support software process improvement. The underlying principle is tredk Sofitvare

is the same.” An organization must understand its softlvastess before determininat
change must be made, asay change must be driven and guided by experiemaepy a set of
generalized practices. There indeed may be generalized process ctutepegssentials of any
processguiding development angdrocess change must lagiven bythe knowledge of the
development organization.

The CMM can be viewed as a top-down approach with a genersdizefl practices, whereas the
NASA approach idottom-up with practicespecific to individualorganizations depending on
their productimprovement goals. Neither approach canebective if used in isolation. The
CMM approach requires awareness ofgheductchanges, and the NASA approach requires use
of some model for selecting the process chaamesd at improvingroductcharacteristics. Both
the top-downand bottom-up approachpky animportant role in the goal amproving the
software busines&or NASA, theCMM defines an excellent modelr assessingrocess and for
selecting potential process changes that can support the goal of sustained improvement.

The CMM approach is designed as a framewlat organizationmay use to better understand
their software process and to provide guidatmeard lowerrisk in the way software is
developed. It provides an excell@nocedure fordentifying potentially beneficiaddditions to the
organization’s softwarbusinesgractices. NASA capitalizes on this approach to guide efforts at
characterizing theway software is developed and in what areas NABWAy look for
improvements in consistence and commonality. By complemetitemg CMM withspecific

27 SEL-95-102

approaches to assessing goals, products, and product attributepleteamd effectiverogram
is defined.

Each of the approaches posesilar difficulties in defining exactlyhe scope osize ofthe local
organization, but some juadigent must be applied to determinbat this single entity can be. The
smaller the organization, the more detailed the prode$isition, as well asthe process
improvement definition, can be.

SEL-95-102 28

Chapter 3. Structure and Operation of the Software
Process Improvement Organization

Chapter Highlights

COMPONENTS

» Developers
* Analysts
* Support Staff

DEVELOPERS

* Produce software

* Provide data

» Participate in studies

» Use experience packages

ANALYSTS

» Design studies
* Analyze project data
» Package results

SUPPORT STAFF

* Process data
» Maintain repository

29 SEL-95-102

improvement organization, its individual componetiits,resources they require, and their
functions and presents details regarditite operation of the software process
improvement program. It assumes the structure is already in place.

This chapter takes a closer look at the structure of the software process

The chapter then describes thesponsibilities, activities, and interaction tbe developers,
analysts, andupportstaff, detailinghow each of these groups performs ahgvities associated
with its process improvemergsponsibilities antiow each operates ordaily basisfor each of
the following time periods associated with development projects: before or at panjeatisng
the project, at or after project completion.

Many of the process-improvement-relategponsibilities othese three organizationelements

are associated with softwameasurement. Some details on measurement-related activities will be
presented in this chapter; additional guidancesiablishing, using, andaintaining asoftware
measurement program can be found in Reference 16.

3.1 Components of the NASA Software Process Improvement
Organization

Software Process Improvement Organizatisn a designationthat refers to thewhole
organizational infrastructure whose components are the

. Developersconsisting othe developers andaintainers, whosprimary objective is to
produce software ortime and within budget. Additionally, they must provide
development information tthe analysts. They receive experience packages from the
analysts (e.g., standards, models) and reuse these packages in their activities.

. Analysts,whose focus and priority are support projecidevelopment byanalyzing
experience drawn from people, process, documentstcaisl They synthesize and
package this information ithe form ofpolicies, standards, training materials, and, in
general, models of the product and of the process (both formal and informal).

. Support staffiwho serve as the focal point falt the archived informatiomproduced and
used within the software processiprovement organizationAdditionally, this
component validates amplalifiesthe data and thether iformation, makingsure that
the organization’snformation repository conforms tthe needs of the analysts and
developers.

Figure3-1 shows the three components of the software praogssvement organization and
highlights some activities they perform.

The analysts and support staff exist solely because of the software process imprastriiest
therefore,all their activitiesare related to software process improvement. However, process
improvement activitiesare only a portion of the developerg'esponsibilities. Some of these
activities are already part of the operation of the developers in a traditional environmsomdout
new activities have been added and some old ones changed. Table 3-1 pssmmsiaof the
development activities pertaining to softwgpeocess improvementhighlighting what has
changed and wha¢mainshe same. The remainder of tlihapter addressesly thoseactivities

of the developers associated with software process improvemdoedtnotdiscuss any of the

SEL-95-102 30

regular activities associated with developing softwariess theyare relevant to the process
improvement activities.

DEVELOPERS

ANALYSTS

« Develop/maintain software
« Participate in studies
« Provide information
(to analysts)
* Reuse models and proces

« Design experiments

« Analyze information

« Package experience
(develop models,
processes, baselines)

=l o

¥
=

A

SUPPORT STAFF

Y

« Process data
« Manage repository

Figure 3-1. Activities of the Software Process Improvement Organization

Table 3-1. Activities of the Developers

value)

command

Development

Organization

Component Unchanged Activities Changed Activities
Developers and Produce software on time and within | Interact with analysts for training,
Maintainers budget (primary goal) goal setting, and feedback
Management Plan and control activities Set up interfaces with analysts and

Use management tools (e.g., earned

Act within management chain of

support staff

Software Process

Adhere to process defined for
development and maintenance

Interact with analysts for training
Use tailored processes

Use analyst-developed standards

Products Output

Generate software al
documentation

nd related

Document lessons learned

Provide data to analysts

Provide products, processes, and
lessons learned to analysts

Tables3-2 through 3-4 present awerview of the processnprovement activities and the
information exchanged between thegeupsduring each timegeriod. The remainder dhis
chapter provides details relating to these activities.

31

SEL-95-102

Table 3-2. Activities Before or at Project Start

From Developers To Analysts

¢ Understanding of project needs

From Analysts To Developers

.

.

.

.

.

Experiment goals

Understanding of changes to the process
Training, as needed

Tailored processes

Refined process models
Experience-based policies and standards
Pertinent tools

Identification of project representative

From Developers To Support Staff

(none)

From Support Staff To Developers

.

.

.

Clear descriptions of data to be provided
Clear and precise definition of terms

Identification of who is responsible for providing which
data

Understanding of when and to whom data are to be
provided

From Analysts To Support Staff
*« Set of forms to be used
« Measures to be collected

¢ Modified or technology-specific forms,
as needed

¢ Report formats

¢ Reporting procedures

From Support Staff To Analysts

(none)

SEL-95-102

32

Table 3-3. Activities During the Project

From Developers To Analysts
¢ Suggestions for process refinement

¢ Project status and feedback at periodic
meetings

From Analysts To Developers
*« Processes and standards

¢ Models and relationships for use in estimation
and planning

¢ Help in applying modified process
e Training, as needed

¢ Periodic status on the experiment, usually
through the project representative

From Developers To Support Staff

¢ Updated information (e.g., personnel changes)
¢ Data (through data collection forms)

¢ Feedback on data collection procedures

« Documents and data for archival

From Support Staff To Developers

¢ Reminders when forms are not submitted
¢ Incorrect or incomplete forms

¢ Periodic reports (usually to the manager)

¢ Archived documents and reports, as needed

From Analysts To Support Staff
¢ Modified report formats
¢ Modified reporting procedures

¢ Documents, technical reports and training
materials for archival

From Support Staff To Analysts
¢ Raw data from the repository
¢ Periodic reports on the project

¢ Problem reports on data collection procedures

¢ Archived documents and reports, as needed

Table 3-4. Activities At or After Project Completion

From Developers To Analysts
¢ Final lessons learned at a project debriefing

¢ Subjective assessment of the experiment

From Analysts To Developers

¢ Feedback on experiment results

From Developers To Support Staff
¢ Project data, specifically for close-out
¢ Documents and reports for archival

¢ Feedback on data collection process

From Support Staff To Developers
¢ Final reports on the project

¢ Archived documents and reports, as needed

From Analysts To Support Staff
¢ Documents and reports for archival

¢ Feedback on data collection process

From Support Staff To Analysts
¢ Raw data from the repository
¢ Final reports on the project

¢ Archived documents and reports, as needed

33

SEL-95-102

3.2 Developers

3.2.1 Overview

The developers comprise the largest element of the overall organization. They are dedicated to the
development orsupport of softwareand may be involveavith one or more projects. Their
activities definghe application domairfior the software processiprovement program, which is

the “whole world” as far as the software process improvement organization is concerned.

The traditional role of the developersst substantially changed lilge fact that it iembedded

in the software process improvement organization. The developers are the mogparitwiaihe
organization and absorb tineajority of itsresources. The developers gigen a problem and

have to solve it in the bepbssible way, within given time arzlidget constraints. As far as
development and management activiies concerned, thmajor difference between a traditional
environment and a softwapeocess improvemeenvironment ighe continual and consistent use

of both the data collected in previous projects and models derived from those datanblysite a

In other words, data collection and analysis are emphasized more than in traditional environments.

The developers’ managemesiructure is notchanged or affected by the software process
improvement program. The analysts havenmanagement responsibility @uthority over the
developers. However, to support the conceptdihelopment managemesttucturemay need

to take on somedditional responsibilities. These coulttlude interfacing withthe other
elements or utilizing specific training and policies provided by the analysts.

3.2.2 Resources

When the developers becorpart of a processmprovement organization, thestaffing is
generally left unchangedSome activitiesthat may previously have beerthe developers’
responsibility (e.g., thedevelopment of standards and traintmurses) are transferred to the
analysts. Therefore, some project resouncag beallocated to the@nalysts, possibly on @art-
time basis.

The managemenbf the development organization n®t affected by the software process
improvement prograniut higher levels of management probawiil be shared with thanalysts
andsupportstaff. Developers areot subordinated to thanalysts. The amount of management
functions should not increase for the developers.

The developersbudgetis not affected by the software procesaprovement program. The
additional functions, which include interfacing witke analysts, providing project developnt
data,and using models and processes developdhdepnalysts, should be carriedit with no
significant impact tothe overall project cost. As an uppelimit on cost impact, some
organizationsmay assumehat there is a 1 or 2 percent overheatermined by thadditional
training, meetings, andata gatheringctivities, but experience has showthat the additional
overhead can be absorbed by the development budget. The developers’ resourcemistheuld
appreciably impacted. Ideally, it would beneficial toallocate an additional 1 to 2 percent to the
developers to compensate for expenses related to activities such as nasgangathering, and
training.

SEL-95-102 34

3.2.3 Activities

The primary responsibility othe developers is to developraaintainsoftware.They musnot be
burdened with software process improvemaantivities; therefore, theirresponsibilities for
software process improvemeareminimal. The development manager, howevemslved with
some analysis activities as detailed in the remainder of this subsection.

The interface between developers and their customers is unchanged, although theatese of
defined models, andther productsnade available bthe analysts il ease some aspectsthis
relationship. Those data and models should rtrekevhole development process more controlled
and predictable, even from the customer’s point of view.

The developers perform the following functions to support software process improvement:
. Provide data
. Participate in studies
. Use experience packages

They alsomay beaskedoccasionally tomeet with the analyster feedback sessions terify
preliminary data analysis,for interviews togather additional project characteristidata or
subjective information, or for training sessions to reinfohee proper use pecific processes
being applied by the developers.

Project personnel (developers) are responsible for providing project data. To do so, they complete
dataforms and submit them on a regulbasis asagreed to by the managers athlysts. The
formsaredelivered to a specified, convenient location or handed to a desigmditedlial. The
developers simply provide the data; they assume no responsibility for analyzing them.

The developersnay beasked to participate in a study of an experimental use of poyoess,
technique,tool, or modelthat is not part of th@rganization’s standard proce$%r projects
undergoing significanprocess changes, the developers will need to atirefings or training
sessions on usinpe new process. At various stages in the experiment, the developers need to
provide their insight regardintdpe value and relevance of interimasults, the degree of success
derived fromthe innovation, and thafficulties experienced in applyirtge new process:or the
majority of projects, theonly trainingneeded is on data reporting agreements and the use of data
collection forms.

Though the organizational experience is drawectly fromthe developers, it is packaged by the
analysts. The developers must then use these experience packaaes adisheir standard
development process. Developemtinually use analyst-provided packages, such as models,
standards, handbooks, and training. Developers participating in experiments also use process
models and processes refined by the analysts.

In support of theséunctions, the developers perform distiactivities corresponding to each
phase of the project.

Before or at the start of a projedhe developers and the development manager pestrenal
activities to support process improvement. Together with the analysts, the development manager

. Definesthe experiment associated with the project.

35 SEL-95-102

. Identifies measures to be collected.

. Identifies training needed for developers.

. Determines the experiment goals.

. Determines forms to be used to collect appropriate data.
. Decides what is to be altered for the project.

. Determines process and standards to be applied.

The manager provides projestart-upinformation such agroject namepreliminary start and
phase dates, and estimates, tostiygportstaff. They also providéhe names oproject personnel
who will be supplyingdata. Atthis stage, the develope(gechnical staff) receive training, as
needed, and instructions on data collection procedures.

For each project, aanalyst is designated apwject representative to actlegsonbetween that
development effort and thenalysisorganization. It is during this time frantleat theanalysis
organizationidentifiesthe project representative. Most interaction between the developers and
analysts takes place through this project representative.

During the project the developers perforseveral activities teupport processnprovement.

The developers (botlmanagement and technical staff) continually proypdeject data by
completingdatacollection forms and submitting thefmanually or electronically) tdesignated
locations. The lead developer colletlie forms fromthe development team agdality assures
them to ensure that the numbers add up, the dates are cancetheformsare filed inproperly.

The forms are then submitted to the support staff for processing. Project managers aibleespons
for periodically re-estimating size, schedule, aalhted informatiorthrough appropriate data
collection forms.

Throughout the project, developers andlysta interact tcclarify process changes and provide
feedback on the experiment. Most interaction between the developers and analysts takes place
through the assigned project representative.

At or after project completignthe developers performeveral activities tasupport process
improvement. They providproject close-out datancluding final system statistics (size, phase
dates, etc.)and subjective informatiathat might help characterizéhe problem, process,
environment, resources, apdoduct. Thedevelopers and analysigintly generate a lessons-
learned document. Thaajority of this document comes fraime developers and focuses on the
development effort as a whole, not specifically on the pracgssvement activitiefthe analysts
capture project-specifitessons learned focusing dhe processmprovement activities and
experiment(s) performed). The lessons-learned document is gerveithtedl. month ofproject
completion.

SEL-95-102 36

3.3 Analysts

3.3.1 Overview

Because thanalysisorganization exists solely ®upport software procesmprovementall the
analysts’ activities directly pertain tbe organization’s software procasgrovement program.

The analysts areesponsible for extracting information fraitme developers and thanalyzing,
synthesizing, and packagirthe experience into reusalpducts for ongoing and future
development and maintenance efforts. Their godhessynthesis and packaging of reusable
experience in théorm of models, standards and policies, training materials, and lessons learned.
The development of this information is based completely on lessomatnttom past projects.

The information is madavailablefor use in the current projects of th@me application domain.

The analysis organization may be logical rather than physical, meaning that

. Personnel may be allocated to the analysts on a part-time basis.

. The analysts have their owavels of management but, gart of alarger parent
organization, typically share the next higher level management with the developers.

. The analysts may include external consultants and researchers.

Most of theanalysts’ activities consist definingandanalyzingthe information provided by the
developers and feeding battie analyzed information tthe developers. Because thiormation

is contained in the experience base, or repository, the analysts must also regularly interact with the
support staff to make sure that the information is appropriately collected, validated, and stored.

When compared with a traditional environment, thealysts’ activitiesare new ones. Some
activities, such as the development of standards, the development of training, and the production
of models,may haveexisted but wer@reviously carriedut bythe developers. Under a process
improvement program, these activities would become the responsibility of the analysts.

3.3.2 Resources

Ideally, the staff of the analysisorganization should include some experienced developers who
have goodield experience on processes and technologies used in the development organization,
and researchers who are experiencedapplying and assessing new concepts of software
engineering technologyGiven the particular role of thanalysts, basic training isoftware
engineering principles and techniques is desiralitee staff could alsoclude experienced
developers allocated to the analysis organization on a part-time or temporary basis.

The analysts have their ownanagementbut higher levels of managemeate shared with the
developers and support staff.

The analysts’budgetand staffing levelsare proportional to the budget and siee of the
development organizatiossipported. On thbasis of NASA experiences in typical organizations
(where the development organization ranges in size Ififirto 500 people), thanalysis element

is typicallybetween 5 and 10 percent of therall size othe development organization (see the
example in Figure 3-2).

37 SEL-95-102

DEVELOPERS
STAFF: 200-250 people
FUNCTION: Develop or maintain software
ACTIVE PROJECTS: 6-10 (concurrent)

ANALYSTS
- AVERAGE PROJECT SIZE:

Project 2 150-200 KLOC STAFF: 10-20 people
Project 3 FUNCTION: - Analyze data
[Projectn | PROJECT STAFF SIZE: * Build models

1 - 15-25 people « Develop standards
« Develop training
« Design experiments
SUPPORT STAFF

STAFF: 2-5 people

FUNCTION: * Process/QA data
« Maintain database
« Operate library

Figure 3-2. Sample Process Improvement Organization

3.3.3 Activities

The heaviest burden of software process improvemeity falls on the analysts. They are
entirely responsiblefor cultivating continual softwangrocess improvementvithin the
organization. The primary operational responsibilities of the analysts are to

. Design studies
. Analyze project data
. Package results

The activities otthe analysts can be associated wéheral development organizations or with
several segments dhe same development organizatioAll activities of the analysts are
associated with software process improvement.

The analysts must first design studies suppottiegorganization’s procegaprovement goals.
They identify candidate process changbst address therganization’s needs artat appear
likely to improvethe resultant product byviewing literature and consulting developers who
have insighinto theproblemarea. Each development project is consideregxpariment (i.e., a
study of softwareengineeringprocesses), and an experim@tan is written for each. These
experiments can rangescope fromvalidation ofthe current organizationaiodels to controlled
investigations otheimpact of introducing a new methodology andolve developers awell as
analysts. In addition téheseindividual experiment planghe analystgusually a lead analyst)
work closely with the organization’s managers to prepdagher level organizationalplans
coordinating the processiprovement activitieacrossall projects to ensure thatl high-priority
organizational goals areeing addressed. Thelgentify data to be collected and organihes
collection based on the characteristics of the organiztitadnsexperimenting witlthe selected
technologies.

SEL-95-102 38

The analysts areesponsible foanalyzingproject data to develop andaintain organizational
models (e.g., cost estimation models, resource modelspeofibes) and to determirthe impact

of new technologies, such as object-oriented design, on the organiddteyndevelop and
update standards that incorporate into thermal organizationalprocedures the new
technologies, the processes that are assoasatedhem, and thenodelsthat supportheir use.
They develop tailoring guidelindsr the standardd.hey also develop training materials and
programs to institutionalize the learning and use of new technologies.

Finally, the analysts must package the results and provide the defwedation to the
developers in useful forms, suchqsdebooks, tools, anaining coursesTheyare resporisle
for developing standards fahe organization’s process based on the experiencéstof
organization’s developers. The analysts train the developacsivities such as using models and
relationshipsthat support thenew technologieglanningand estimating usingpose models,
controlling the execution of the new and updated processestagmihg mechanisms for
standards. They fine-tune models and relationships to project-specific charact@assdsy
using parameters already provided with modelsThey also provide feedback tivze developers
based on information obtained from them. This element frthlysts’ responsibilities is a critical
one. Information, results, and progress must be continually fed back to the develtpetely,
all items packaged by the analysts are for the developers’ use.

In support of thes&nctions, the analysts perform distiactivities corresponding to each phase
of the project.

Before or at the start of a projedhe analysts perforrseveral process improvemeattivities.

For each project, amnalyst must be designated agpraject representative to act Baison
between thatdevelopment effort and thanalysis organization. The project representative
produces an experiment plémat definesthe goals and approach of the experiment, provides a
brief overview ofthe development effort, and describesdat to be collected. Thanalysts
work with the development manager definethe experiment and to determine what is needed
from and by the developer§hey provide models and relationshifes use in estimation and
planning to the development manager. Process-specific training is given to the developers.

During the projectthe analysts perforgeveral process improvement activiti€eroughout the
project, theycontinually extract andanalyzeprojectinformation stored in the databasesfine
processes as needed based on feedback from the developessippod the developers in
applying the experience packages aafined processesThey continuallyinteract with the
support staff to ensure that data collection, processing, and reporting run smoothly.

At or after project completigrthe analysts perform several process improvement activities.
For individual experiments, the analysts

. Extract and analyze project information stored in the database.

. Assess the experiment results.

. Package results (e.g., technical report, updated process guidebook).

. Jointly with the developers, generate a lessons-learned document. The developers
provide most of this document, focusing the development effort as a whole rather

39 SEL-95-102

thanspecifically onthe processmprovement activities. The analy$tsuallythe project
representative) capture project-specifessons learned focusing othe process
improvement activities and experiment(s) performed. This documgahéatedvithin

1 month of project completion.

Based on results of multiple experiments across many projects, the analysts
. Tailor standards and guidebooks.
. Assess models.

. Update models, as necessary.

3.4 Support Staff

3.4.1 Overview

All support staff activitiesredirectly related tdhe organization’s software procaesgprovement
program. They are primarily responsible for processing matading collecting, quality assuring,
managing, and archivingll project data and fomaintainingthe information repositorywhich

involves maintaining the organization’s experience base. The actual experience base, or repository
of information, consists of two basic components:

. Projects databasel'his component igsually a relationallatabase, with associatddta
entry and data reportirfgnctions. It contains thieistoricaldatafrom the projectssuch
as cost,schedule, ane@rrors. Asamplestructure ofsuch a database can be seen in
Reference 17.

. Library. This second component is a document management and production
infrastructure, podsly but notnecessarilyautomated, that supports storagerieval,
and distribution of project-related item@ata collection forms, project-related
documentation) and analyst-produced experience packages sucbdels (usually
documented in reports and guidebooks), standards, policies, handbooks and guidebooks,
and reports.

3.4.2 Resources

The supporstaffrequire a differenset ofskills. Theyare notecessarily experiencedsoftware
engineeringput they have practical experience with thels used in thexperience basg.g.,
database and document management systems).

The supportstaff have theirwn managemenbut, like theanalysts, sharéhe nextevel of
management with the developers.

The supporstaff size andudgetaresmallerthan those of thanalysts. Based on experience, a
reasonable ratio for a staff supporting environments of 200 to 500 develd@toishe overall
budget of theanalysisorganization. These figures reflecstaucturesimilar tothe one presented
in Figure3-2. Areasonable estimate for thest ofthis function is 5 percent ¢he development
cost. Formuch larger organizations, experience has shinanhthe percentage decreasesh
that a support staff of 20 can carry out this function for an organization of several thousand.

SEL-95-102 40

3.4.3 Activities

The support staff exist solely for software procesmprovement; thereforeall their
responsibilitiesaredirectly related tosoftware process improvemewithin anorganization. The
primary operational responsibilities tie supporstaffare independent gpecificprojects.They
are to

. Process data
. Maintain the information repository
The activities of the support staff are to

The supportstaff process, i.e., collectstore, quality assure, summarize, arekport, the
organization’s projectiata. They managéhe information provided byhe developers to ensure
that it is complete, consisteraind of adequatguality sothe analysts can use it to develop the
models and gain a general understanding of the software processppbetstaff typicallyuse a
commercially available relationalatabase management systenDBRIS) to store the project
data. The suppostaff assign a database administrd@BA) for the organization. The DBA
coordinates dateollection activitiesgets appropriateaformation fromthe analysts (e.g., what is
beingmonitored forspecific projects), and serves as the interface to the developers. To ensure
quality, thesupportstaff monitorthe regularity and completeness of da¢acollection process.
They applythe datecollection procedures provided by the analysts @mbrt any problems
encountered in their execution. They also matiagelatacollection forms, makingure thathey
areavailable inthe current format to whoever needs them. As bletame availableéhe support
staff enter them intthe projects databasehey makesure that the data afermally corsistent
with the datacollection standards. They also archive documents, techmeipatts,and other
project-related informationmaking sure that the currentersions areavailable and that the
outdatedversions are appropriatehandled. Thesupportstaff are responsible for gettingata
from two sources:

. Directly from project personnelMost project data are gatherelrectly from the
developers through dateollection forms. Thesupport staff must makethe data
collection process gzainless as possibfer the developerdhey must ensurthat an
interface is clearly establishdaktween themselves aride developers so that the
developers careasily provide the project data. Developers must understand who is
responsible for collecting arfdrnishing project data, hovirequentlythe data will be
collected,which portions of the softwaréfe cycle will bereflected, and what type of
personnel (management, technical, or administratitlebevincluded. Thesupportstaff
areresponsible fomanaginghe datecollection forms; they must ensuteat theforms
areavailable tothose who need theruolearly indicatewhere they are to be deposited,
and promptly collect and process thehley must ensuréhat there is a consistent
understanding of the softwamaeasurement terms and concepts and mupply
concise, clear definitions tthe developers. The analysts sesponsible for witing
definitionsthat are consistenwith organizational goals andcally understooddeas;
however, the suppotaff are responsible forfurnishing the definitions tothe data
providers (the developers).

41 SEL-95-102

. Automatically from the projecBome information, such as source cgdawth rate or
computer resources usage, is monitored and gatkretdonically without direct input
from the developers. The suppstaff develop, run, anthaintainprocedures fothis
automatic data collection.

The supportstaff are responsible formaintaining the information repositorywhich includes
maintaining, archiving, and distributiral output from the analystsuch as archivedeports,
standards, training materials, and experimental studies.arbegsponsible fomaintainingboth
components of the repository: the projects database and the library.

THE PROJECTDATABASE. After collectingthe data, the suppastaff storethem in an on-
line databasepreferably a commercially availadRDBMS. Thequality of the stored datenust
then be considered. The support staff should quality assure the data using a two-step process:

1. Verify the source dateéSupportstafftrack discrepancies tthe source andorrect them.
This stepincludes checkinghat the datdorms have been submitted aack complete
(i.e., all required valuesre provided)yaluesare of thespecified typegle.g., numeric
fields do not contain non-number values); valuage within specifiedranges (e.g.,
number ofhours of effort peday per person is never greater than 24); @aldes are
reported on the prescribed schedule.

2. Verify the data in the databaséfter the data are entered into the database, support
staff perform a second check to verify that the entries match the source value.

The supportstaff maintainand operate the databas&hey develop,execute, andmnaintain
procedures for the operation of the databasledingstart-up, shut-down, backups, restorations,
reorganizations, and reconfigurations. Occasionally, chandles ttatacollection process will be
introduced. The suppodtaff are responsible for evaluatintpe effect of such changes on the
database design, supporting application softwdatgcollection procedures, and documentation.
They mustimplementthe changes and enstinat earlier data are notrendered obsolete or
comparisons invalidated.

The support staff produce and distribute reports and data summaries to users in all of the software
process improvement program’s organizational componkfasy reports are generated on a
regular schedule. These include singilejectsummarieghat focus on a particular data type and
multiple project roll-ups that provide highdvel satistics facilitating project-to-project
comparisons. Theseportsmay bedistributed to developers to provide feedback on project
measures. Analysts alsse these reports tdentify projects and data to be used in studies and
model generation. The support staff may also generate reports, such as low-level dateodumps

the data verification process, on an ad hoc, as requested basis.

Occasionallythe supportstaff are alsoresponsible for preparing and exportirgv data to
external organizations. Before sendihg actual datahey need to sanitize them to preserve the
confidentiality ofdata providers (e.gremoving names of individualsnd substituting generic
project names for actual ones).

THE LIBRARY. The supportstaff maintainthe organization’sbrary of productssupplied by
both developers (e.glessons learned) and analyétsg., experiment plans, technica¢ports,
standards, policies, and handbooks). They organizensmidtain acatalog of the likary’s

SEL-95-102 42

contents,archive documents and techniga&lports, ensure that curremersions of archived
documents anceports arevailable, removeutdatedversions from thdéibrary, andprepare and
execute document reproduction procedures.

In support of theséunctions, thesupportstaff perform distinct activities corresponding to each
phase of the project.

Before or at project startthe supporistaff perform several activities ®upport process im-
provement in addition to the project-independextivities (i.e., processinghe data and
maintainingthe information repository). Frorthe analyststhe supporstaff get the appropriate
forms to be used, measures to be collectedaagdinformation omstructions specific tohat
project. The supporstaff must ensurg¢hat communications have been established with the
developers anthat the datacollection procedures amdearly understood. The DBAypically
meets with the project leader to enstnat the developers understand what is expectdideat
andthat the supportaff understanthe particular project arehy uniquechanges being applied.
The support staff obtain basic project information from the development marcdigéing names

of project personnel and initial estimates.

During the projectthe supporstaff perform several activities snpport processnprovement in
addition to the project-independeattivities (i.e., processinthe data andhaintaining the
information repository)Throughout the projecthey interact with both developers asuhlysts
and provide informatiofdata, documents, reports, etc.) on a regodais, including responding
to specialrequests for informationThey must also ensurthe smooth operation of the
organization’s information repository.

At or after project completignthe supporstaff perform several activities ®upport process
improvement in addition tdhe project-independeattivities (i.e., processintghe data and
maintaining the information repository).They collect andorocess project close-out data and
generatdinal reports.They process documents aneports forarchival andespond to requests
for information.

3.5 Summary

The success of the software procesprovement program depends thie smooth operation of

its components. The program, as a wholenlg as effective athe individual componentsAided

by the supporstaff, the analysts am@sponsible fofacilitating software processmprovement

within the organization. The developers are the source of experience and the cornerstone of the
entire software process improvement program. Every effort should be talestrdot their
experience in an unobtrusive manner. When the program is opafgictiyvely, its activities are

viewed by developers dke standaravay of doing businesapt assome “necessary evil.” All
members othe organization reap thenefits and becomailling to supportand advocate the
process improvement program.

43 SEL-95-102

Chapter 4. Implementation of the Software Process
Improvement Program

Chapter Highlights

OBTAIN COMMITMENT

Gain support of key individuals
Designate resources

Focus on first products
Produce software process
improvement plan

ESTABLISH STRUCTURE i :

* Determine affected elements of
development organization

» Establish analysis organization

» Establish support staff

ESTABLISH PROCESS

» Define data to be collected

» Define terminology to be used

» Define data collection, quality
assurance, and archival procedures

» Define how to capture development
lessons learned

PRODUCE BASELINE &

» Capture snapshot of
organization’s environment,
process, and product
characteristics Z

START OPERATION

 Initiate normal day-to-day operations
of the software process
improvement organization

45 SEL-95-102

his chapter describes thieve steps necessary testablish andmplement asoftware
process improvement program:

1. Obtain commitment from the organization.

2. Establish the basic structure of the software process improvement organization.
3. Establislthe process and operational concepts for the organizational elements.
4. Produce the organizational baseline.

5. Start operation of the software process improvement program.

The ideadehind allthe steps of themplementatiorprocess pertain to theeopeandfocusof the
software process improvement program. Hoepeis delimited by a specific domain. The
implementors,that is, those responsible forestablishingthe software processprovement
program, shouldtartwith a small, but very reactivejnitiative that representimited overhead

and providesvisible benefits. The opportunity fowidening the scope to othetomains and
organizationsill exist if theoriginal effort was mostly successful. Thecusis theimprovement

of software in aspecific domain using lessons learned from experimentation with technologies in
real projects. Themplementors should resigte temptation to introduce changes to the process
that, althoughmakingsense, areot in tunewith the overall goals othe organization that were
set in theUnderstanding Phase after th@selinewas established. The improvement nasget

the areas where it is most needed.

Startingsmall isalso importantLimiting the number of projects affected, restrictitige portions
of the softwardife cycle tothose withalready-defined processesthin the organization, and
limiting staff involvement to essential personnel wlll help tominimize resistance from, and
impact on, managers and developers. The scope of the progikhnewslve, but thetime to
increase the size of the program is after it has become successful.

4.1 Obtain Commitment

Obtaining commitment is crucial tbe success of the software prodegsrovement program. At
this point, the implementors need to

. Inform all levels inthe organization about theganizational goals anthe changes
implied by the software process improvement program.

. Obtain support from some key individuals.
. Prepare the ground for execution of the next steps.

The software process improvement program must be sdldetamrganization by showing its
practical benefitdor everybody. In particular, the concept must be sold tkeiedecision-
making levels othe organization to obtain, and retain, tiseipportduring bothimplementation
and operation of the program.

SEL-95-102 46

The major action items included in this step are to

. Enlist an advocateTheidealadvocate is an experienced senior software engineer who
can dedicate at leasalf of his orher time tathe software processiprovement
activities. Thisperson must haveaignificant insight into all ofthe organization’s
development efforts and general activities because he or she will be responsible for
coordinatingall the processnprovement activities, makinipe final determination for
experiments to be performed and the projects to which they will be assigned.

. Increase awarenesAwareness must be raised wibo key groups: the developers and
other supporelements. The role amdsponsibilities othe developers must loarified
because they are the drivers of thgrovementprocess. Support groupsuch as
Quality Assurance anéProject Control, also must bmade aware othe process
improvement activities because they will beavily affected by the changes in the
organization and its standards.

. Secure management suppdvianagement doe®ot have to be direct advocate of the
initiative but must be aware of it, understand its goals,sapgort itexplicitly and
implicitly.

. Designate resourcesThe most important resource in thmplementation of the
software process improvement program is staff time. Management must beleatare
the improvement program does not come free and must allocate enough resources to the
effort. Some experiencadembers othe development teams must be allocated, at least
parttime, to software process improvement, because they are the current owners of the
experiencethat will be packaged. Resourcasd time must also be allocatied the
support staff.

. Focus on the first productdhe goals of the processiprovement program must be
clearly defined in terms of the

- Concept they implement

- Needs they are going to satisfy

- Expected baseline changes

- Impact on existing software policy

. Produce a software process improvement pldns plan will define in amoperational
way the role of the process improvement program by dealing with the following topics:

- Discussion of the concept (Why does the organization want to do this?)
- Outline of the program (Describe what it will and will not do.)

- Definition of the scope of theverall program (Whavill it affect? Whichtypes of
projects will participate?)

- ldentification of measurable goals and drivers (What will be the meassumeaafss?
How can adjustments be made?)

a7 SEL-95-102

Process descriptio(How will changes be introduced®w will improvement be
managed? How will new technology be introduced?)

- Resources assigned to the tasks (Who? How much time? What will it cost?)

4.2 Establish Structure

The structureestablished in thistep was outlined in Chapter 3. It consists of three components:
developers, analysts, and support staff. Based on the description of the componegteéroies
Chapter 3, the major action items included in this step are to

. Define the scope of the development organizatl@etermine organizational units
involved (which projects? departments? functions?). Determine the software to be
included (what life-cycle phases W be addressed? what types/classes of software?).
Specify roles and responsibilitie¢and points of contactwhen appropriate) for
interfacing with the analysts and support staff.

. Establish the analysis organizatioAssign staff tahe analysisorganization, according
to the established criteria. Set the focus on some early products.

. Establish the support stafAssign staff andther resources (e.g., space fhysical
location) to the support organization according toest@blished criteria. Establish the
datacollection, quality assurance, aather proceduresecessary fothe organization
to run efficiently. Determine tools to be used (e.g., RDBMS).

Figure3-2 showed aampleprocess improvement organization. Figure 4-1 repretfemtsame
organization but shows sonalditional details pertaining tthe structure of thaiarticular
organization.

DEVELOPERS ANALYSTS
STAFF: ~200 people (contractor and NASA) STAFF: ~10-20 people from NASA/GSFC,
FUNCTION: Develop and maintain flight University of Maryland, and CSC
dynamics software PRODUCTS:
« All operational support software - Forms - Sta@ards
(no prototypes, no R&D) - Models - Training

. . - Processes
« From design through operations

. . « From experiment plan through project closeout
« Each project manager responsible for P P gh proj

supporting process improvement activities + Funding primarily from NASA

SUPPORT STAFF

STAFF: 4 people (2 data technicians, 2 developers)

« Staff and repository occupy ~500 sq. ft.,
located in developers' space

¢ Use commercial RDBMS (Oracle)

Figure 4-1. Sample Process Improvement Organizational Structure

SEL-95-102 48

A critical issuethroughout the execution diiis step is theclear specification of what iseing
done. Atthis stage, the tendency to broaden the scopstrang. Theimplementors must
remember that alear definition ofscope and products and a rigorapecification of and
compliance witlthe rolesestablished ahe beginningare thekey to success. If adjustments need
to be made, they must be explicitly planned and motivated.

4.3 Establish Process

The purpose ofthis step is thedefinition of the operational concept and the development of the
necessary instruments for each componenhef software processiprovement organization.
The basic operation of the software procegmprovement program has been presented in
Chapter 3.

Based on that description of the operation, the major action items performed in this step are to

. Define what data will be collected and archivédhat forms will be used?

. Define terminology to be useBrepare a glossadefining termscommonlyused and
describing how they are used (e.g., What is a line of code? What is an error?).

. Define how data will be collected, quality assured, and archiviedtablished detailed
data collection proceduresDefine seép-by-step timelinesWhat is the database
organization?

. Define how the development lessons will be captietine report formats.

The organization mudind the bestvay ofoperating the procesmprovement program in its
specific context. It isnot necessary to overplan and provide detailed specificatmnsthe
operation of the program. The process wWolve asthe organizatiofearns from its own
experiences. Defining and documenting detadi@tcollection procedures is necessary, however,
to guarantee the integrity and completeness of the data.

4.4 Produce a Baseline

Producing aaseline isperhaps, the mosritical element irthe software processprovement
approach. In thistep, the organization captures a picturésaif as it exists athattime. The
baseline is a characiestion of the organization’s software process pratluct. Thebaseline
should include insight into the following areas:

. How much software exists within the organization?
. What are the characteristics of the organization’s product?
. What are the characteristics of the organization’s process?

. What are the perceived strengths and weaknesses from selected relevant perspectives
(e.g., developers, customers and users, management)?

The instruments used luilding a baseline includde usuatlatacollection instruments: surveys,
roundtables, interviews, and historicklta. The questions thaan be asked in ttsrvey or
during the interviews and roundtables are aimed at collecting information such as

49 SEL-95-102

. Resources (i.e., people, mongge) dedicated to software activities (i.e., development,
management, maintenance)

. Amount of softwarébeing developed or maintained,\asll asthe domain andifetime
associated with the software

. Hardware and software environment (tools, languages, etc.)
. Methods and technologies used in the different phases of the software life cycle

. Major problem areas and sources of errors

During the development of tHeaseline, measures can &&sociated, where possible, with the
informationthat is collectedKey measures will characterize the software processpsotlicts,
emphasizing characteristics closedfated to theoverall goals ofthe organization. Taentify
these key measures, goaleidentified hatsay whydata arebeingcollected. The goals can be
refined into questions based the phase they address and the viewpoint and charactéestic
take into account. Measures are then assocwttd these questions to answer them in a
guantitative way. Reference 4 provides additional information on establgghaigrefining them
into questions, and identifying appropriate measures for data collection.

Other measures can be collected durihg baseliningeffort that may have relevance to the
improvement goals being set within the organization. Examples of such measures include

. Error density (e.g., errors per KSLOC)
. Staffing (e.g., number of people) and effort (e.g., staff months) per project
. Software measures (e.g., SLOC, complexity)
. People characteristics (e.g., education, experience)
The major action items performed in the baselining are to

. Identify the major application domains in which the organization operatas.activity
can be accomplished by lookingthe functionality ofthe software developed, rgal
characteristics of the problem, organizational constraints, standards in use, platforms,
and development environments.

. Develop and adapt data-gathering mechanissuwstable forthe specific domain.
Suggestednechanisms include administered surveys, infommahdtable discussions,
data and documentation review, and one-on-one interviews.

. Gather information and insighby interviewing key individualsand groups. Use
directedsampling.Startwith senior managers et anoverview of the organization, to
make them aware a@he baselineefforts, and tadentify software “pocketsiwvithin the
organization. Sampléhese pockets. Be sure to getrspectives fronthroughout the
organization (senior management, technical management, quality assurance, engineers,
programmers, testers, etc.).

. Analyze the dataCross-verify data collected.

SEL-95-102 50

. Establish a baselinghat outlines themajor distributions of relevant characteristics
(effort per phase, errors per product, etc.) quantified by measurement.

. Present results of baselining activitid3resentpreliminary versions ofhe baseline to
different organizational levels and incorporate feedback into the baseline.

Table 4-1 provides some guidancetfog datecollection involved with baselining. This guidance
reflects lessons learned from the baselining of NASA software (References 2, 18, and 19).

Table 4-1. Key Lessons in Data Collection for Baselining

Do Don’t

Gather data in person. Mail surveys.

Prototype and test survey vehicles. Use descriptive entries.

Use quantities or checkmarks. Use more than three people to collect data.

Use one person (or a small group) for data Rely on someone outside the organization for

gathering. baselining.

Use someone familiar with the organization for Get wrapped up in details and statistics.

baselining activities. . - .
Expect quick results (baselining takes time).

Look for trends and relative comparisons.

Allocate time and resources for baselining.

The baseline is meant to establiglhere an organization stands today. Iin& abasis for
judgment and shouldot beused tolabelthe organization as good or bad. Taseline provides
the organization with théasic understanding of iggroducts and processes aedables the
organization to measure and control changepaiogress. To support procasgprovement, the
baselinemustnot remainstatic but must benaintained to refleaturrent data. SeReferences 2,
18, and 19 for examples of completed reports of baselining activities within NASA.

4.5 Start Operation

The purpose othis step is toinitiate the normal daily operation of the software process
improvement organization. Based the defined goals, aet of processes isitiated as described
in the normal operational phases in Chapter 3.

The recommendations for the implementors in this phase are to

. Ensure thathange is driven byhe information contained ithe baselineand by the
perceptions of the developers.

. Pay attention to the day-by-day comments provided by the developers.

The normal operation of the software procasprovement program bens according to the
process described in Chapter 4. The operdttlows the three-phasenprovement process:
understanding, assessing, and packaging, described in Chapter 2.

51 SEL-95-102

Chapter 5. Management of the Software Process

Improvement Program

Chapter Highlights

—

CosT

overhead

ANALYSTS: Ranges from 5 to 15 percent
SUPPORT STAFF: Ranges from 3 to 7
percent

‘F — “ DEVELOPERS: No more than 2 percent

BENEFITS

Established improvement process

Repository of experience-based software
processes and models

A process improvement infrastructure
Structured mechanism for introducing new

technologies

A reuse-based software development
process

Quantifiable benefits in specific
organization

KEY MANAGEMENT GUIDELINES

Limit scope

Clearly describe and assign roles

Keep analysts separate from developers
Ensure that developers drive change
Proceed slowly

Produce specific products

53

SEL-95-102

operation of a software process improvement program. It discissses such asost

and staffing, asvell as determininghe payoff of having grocess improvement program.
The information is based on lessons learned iasight gained from havingnstituted such
programs at GSFC’s SEL, JPL's SORCE, LaRC’s SEAL, aiigr places where aimilar
concept is in place and operating.

T his chapter addressdeey management issues associated thghmplementation and

5.1 CostlIssues

The cost of processmprovement is one adfhe mostritical succesdactors for a software
improvement initiative based dine approach presentedtims guidebook. Besidelhe cost of the
specific experimentationwhose goal is assessment and tailoring of softveagineering
technologies, an ongoirgpstexists due to the presence aiaasurement systesupported by
staff andtools. This sectionpresents informatioravailable onthe cost of software process
improvement.

Process improvement is not free, but it can be tailored in sizeoahtbfit the goals and budgets
of anysoftware organization. A software process improvement program must be undeitaken
the expectation that the return will be worth timeestment. There iWbe acost, howeverand it
must be estimated in the organization’s budget; otherwise, tliekmerustrations, attempts at
shortcuts, and &ailed progam. Planningmust take into accourall the hidden elements of the
proposed program—elements that often are more costly diarteup thanthey will be after the
program becomes operational. The higher start-up cost is another reason to start small.

Planners often incorrectly assume that the highest cost of process improvement will be assigned to
the developers. Thaiart of the overheadxpense, which includes completing formgntifying

project characteristics, andeeting with analysts, is actuallige smallestportion of the three
elements of the software process improvement program’s cost:

. Cost to the software projects (overhead to the developers)

. Cost ofquality assuringstoring, andarchivingdata and packageskperiencgcost of
support staff)

. Cost of analyzing and packaging data and experience (cost of analysts)
The cost of process improvement also depends on the following three scope considerations:
. The size of the organization

. The number of projeciacluded inthe program and supported by the software process
improvement organization

. The extent of the software processprovement initiative(parts of thelife cycle
targeted by the initiative, number of pilot projects, breadth ah#esurement program,
etc.)

NASA experience showthat there will be aminimum cost associated withestablishing and
operatingany effectivgorocess improvement program and its associated organization. The total
costwill increase depending on the extentwioich the organization wants, or can afford, to

SEL-95-102 54

expand the program to addresdditional projects, moreomprehensive studies, and broader
improvement activities.

The cost information available isbased primarily on over 18 years of experienceom
organizations ranging in size from approximatdlp0 to 500 persons. Soradditional
information has been derived from process improvement programs in larger organizations of up to
5,000 persons. The number of projects active at any time has ranged from a low of 5 or 6 projects
to a high ofover 20 active projects, with the projectging in size from approximately 5
KSLOC to over Imillion SLOC. Because costs depend darge number of parameterssiagle
definitive value cannot be cited that represents tbest of any organization’s process
improvement program. Based on experience, however, general suggestions can betpatvided

an organization can interpret in the context of its own goals and environment.

As a general rule, theverallcost of the programan be represented in terms of tlost toeach
of the three organizational elements:

. Overhead to théeveloperswill not exceed 2 percent of the total projeleivelopment
costand is mordikely to be lesghan 1 percenfwhich implies that it is notactually
measurable and is absorbed in the overhead).

. Thesupport staffnayreach a constant stdéivel of fromone tofive full-time pasonnel
for data processingupport. In addition, theost of thedatabase software will also be
allocated to the support component.

. Severalfull time analystswill be required andanay cost up to 10 or 15 perceat the
total development budget. As an example, the SEL spends an average of about 7 percent
of each project’s total development budget on analysis and packaging.

Figure 5-1 illustrates theosts of theslements of a&oftware process improvement program as
percentages of the totatganizationalcost. The individual costs arediscussed in more detail in
the following subsections.

5.1.1 Overhead to Developers

The cost of software process improvement should never add mare
than 2 percent to the software development or maintenance effoft.

The sméest element ofthe cost of software processprovement isthe overhead to the
developers. This overheadcludesthe cost otompleting forms, participating in interviews,
attending training sessions describing measurement or technology experimemisipizwgdto
characterize project development.

Although start-up costs may belagh as Soercent of the development budget, the actast of
operating areffective program willnormally not exceed 1 or 2 percent regardless ofriheber
of projects under way within the organization.

Some legitimateosts are associatedth introducing the providers afata to a new program;
however, part of thehigher initial cost is attributable to theinefficiencies inherent in an
inexperienced organization’s program. Such new progrymsally ask the developers to

55 SEL-95-102

complete unnecessary forms or require excruciating de#ails oflittle value or isnot a part of
the stated goal. Avell-plannedprogram will never impose aignificant cost impact on the
development or maintenance project.

Mid-Size Organizations Large Organizations
(100-500 persons) (Over 500, Up to 5,000 persons)
15 4 3
ks ks
%) 5 %)
5 10 - 6-15% s 2-
P P
© ©
® 5 3-7% S 14
Up to Up to Up to
Up to 2% 1% 2% 3%
Overhead to Cost of Cost of Overhead to Cost of Cost of
Developers Support Staff Analysts Developers Support Staff Analysts

Figure 5-1. Cost of Software Process Improvement

5.1.2 Cost of Support Staff

The cost of the support staff may range from 3 to 7 percent of th‘k:
total development budget. “

This element includes collecting, validating, and archivitlzga. It also includes database
management, library maintenanaecution of support toolsand high-level reporting of
summary measuremedata. Thesessential activities must be plannsdpported, andarefully
executed. In addition to the costpdrsonnel supporting this activity, there willthe added cost
of acquiring andnaintainingdatabase software, support toa@sd other automategrocessing
aids (e.g., code analyzers).

Within an organization of over 50 managemeteizhnical, and clerical personnahy process
improvement program will require three fige full-time staff members to handtée necessary
support tasks. Amallerorganization, with perhapsnly one project and a pilot program, may
wish to combine thisdata processing efforvith the configurationmanagement{CM) or
independent quality assuran€@A) activities;implementation of @eparate suppoelement may
not be costeffective. A large organizatioomay benefit by creatingseparate, structural
components to perform the three distinct rolesnfall organization with amall project may
simply assigrthe roles tandividual personnel. In some cases, a singtividual mayperform
multiple roles, as long as the amount of effort allocated to separate roles is clearly identified.

Experience within NASA has shown thihé cost of the suppostaff supporting organizations of
100 to 200 software developersaigproximately 7 percent tiie total effort. That cosbcludes
approximatelyfive full-time support staff personnelldata technicians and databasepport
personnel) plushe costs of the DBMS and associated software tooleguigmentFor larger
programs (250 to 600 software personnetperience indicateldtonly one additionafull-time
support person is required. Thus, for organizatwitis 50 to 600 developers, the overheagt

SEL-95-102 56

is approximately 6 percent tife project cost. Fasrganizations with approximateh00 to 1,000
software personnel, the overheambt approaches 3 percent of the project cost or asven
full-time personnel added to the cost of the tools and equipment.

The costestimates are based on the assumphiahan organization isctively working on 5 to
15 development or maintenance projects at any one time. The cwstadf the supportaff will
vary significantly depending on thenumber of projects participating ithe program. An
organization of 200 or 300 people actively working on a single large project will requdte
less support than theame organization with 20 actigenallerprojects.Limited experience with
larger organizations of over 5,000 persoricatesthat the supporstaff cost isessentially the
same as that for an organization of 500. Asi#e increases, an organization tends to calleizt
at a less detailed level.

5.1.3 Cost of Analysts

The cost of analysis and packaging ranges from 6 to 15 percent jof
the total project budget.

Theanalysisorganization is the mostitical part of the processnprovement program andcurs
the most cost of the thremganizational elements. Withosufficient allocation oeffort to the
analysis and packaging function, the process improvement program will fail.

NASA experience shovwtbat the cost othis element far exceetlse combinedcosts of the other
two. A successful program demanitst this cost berecognized and budgeteBor programs
involving 50 t0250 software developers oraintainersthe cost othis activity has consistently
run from approximately 7 to 12 percent thfe organization’s total budget. Costslude
designing studies and developing reamcepts; developing and writing standards; amalyzing,
providing feedback, and developing improvement guidelinescdsteofthis element depends on
the number of active projectsithin the organization. Thiggures provided here assume at least
10 active projects and an archivedzfta from at least 15 projecévailablefor analysis. The
analysis cost would be smaller than indicated if there were fewer active projects.

NASA's historicaldata indicate that organizatiosgending betwee$20 million and $30million
for development andnaintenance projects have spent betweemiiibn and $3million for
extensive and matum@nalysisefforts (in fiscalyear 1993 dollars)-or efforts on anuch larger
scale, theanalysismust necessarily beonducted on aomparably higher levetonsequently, the
overhead percentage decreasgsificantly. Anexpenditure of an equivalent amountaoflysis
resources plus a modest increase duthésize ofthe organization neeawbt exceed the lower
range ofcost for analysisactivities. That is, for larger organizationje cost ofnalysis and
packaging activities need not exceed 3 percent.

Regardless of thsize of an organizatiomdequate resources must be allocated forctitisal
program element.

57 SEL-95-102

5.2 Benefits Obtained

By implementing gprocess improvement program aestablishing an organizationstructure
devoted to software process improvement, an organization can reap many benefits:

. An established improvememrocess for software, substantiated and controlled by
guantitative data

. A repository of software processes ambdels that are empirically based on the
everyday practice of the organization

. An infrastructure that regres alimited overhead and provides substantakt and
quality performance benefits

. A structuredmechanisnfor identifying, assessin@nd incorporating into the process
new technologies that have proven to be valuable in similar contexts

. A reuse-based software development prodesBiding code, designs, processes,
resources, models, lessons learned, and quality functions

The software process improvement program providesoigorate memory of software
experienceghatcan be used in ongoing and future ventures. The organigaiitsthe ability to

learn from everyproject, constantly increase the maturity of the organization, and incorporate
new technologies into tHée cycle. Inthe long term, the procesaprovement prograreupports

the overall evolution othe organization from a project-based one, whdractivitiesare aimed

at the successful execution dfingle projects, to a capability-basede, which utilizes the
experience base across all projects.

Are there economibenefits in establishing amslipporting a process improvement program?
Identifying conclusive evidence dhe economibenefits derived fronprocessimprovement
programs iextremely difficult. The major reason for thdfficulty is the relative immaturity of
process improvement programihin the software industrywhereby quantitative evidence could
be derived.

Quantitative results can be obtained when measurement programsature enough to support
the process improvement program. The goal of the proopssvement approach detailedtis
guidebook is to improvthe products of an organizatidQuantifiable benefits and improvements
must be measured against the geatsby thespecificorganization to improve iggroducts.Have
error rates decreaseahd reliability improved?Has totalsystem cost beenreduced? Has
productivity been improved? The results pybcess improvement should beantifiable and
should demonstrate positive return on investment depending on the goals of the organization.

Organizations that have been using the concepts of process and product improvement described in
this guidebook can determineosts, benefits, and general impacts of such a program.
Figures 5-2 through 5-6 show some tangiddaefits obtained byne such NASA organization at

GSFC. The data presented indicate the typdasepéfitsthat can be achieved by establishing a
process improvement prograbut the quatified resultsarespecific tothe one organization. The

most importantenefitdemonstrated here is that an organizatan quantify andualify the

impacts of change. Eventifie impact is negativethe organization hagained experience and

SEL-95-102 58

benefited fromthe additional knowledge. Figures 5tBrough 5-5 focus ommpact toproduct;
they demonstrate change to the product over time as a result of process improvement activities.

Figure 5-2 shows the results of the organization’s process improvement prograpraduits in
the area of softwaneliability. As this figurellustrates,reliability has improved by 75 percent as
the averageerror rateduring software development has decreased #oBn to 1 error per
KSLOC.

~ 10
el
3 High = 8.9
o g A
[}
>
5]
2 61
3
S 4 Avg =~4.5
X
2 High =2.4
e 24 = Igh = 2.
= Low=1.7 Avg =-1
0 Low =0.2
Early Current
(1985-1989) (1990-1993)
8 similar systems 7 similar systems
COBE, GOES, GRO, EUVE, SAMPEX (TS and AGSS)
UARS (TS and AGSS) FAST, TOMS, WIND/Polar (TS)
TS = telemetry simulator
AGSS = attitude ground support system

Figure 5-2. Improvements in Product—Reliability

Figure 5-3 shows the results of the organization’s process improvement prograproaucs in
the area of reus&his figure shows thahe reuse rathas increased by 300 percent frabout
20 percent to nearly 80 percent.

100
90
Avg
80 ~79%
© 60 61
3 Ada
& 5 simil
- similar
< 40 (
FORTRAN Systems)
20 1 Avg (3 similar
0 | ~20% | systems)
Early Current
(1985-1989) (1990-1993)
8 similar systems 8 similar systems
COBE, GOES, GRO, UARS EUVE, SAMPEX,
(TS and AGSS) WIND/Polar (TS and AGSS)
FAST, TOMS (TS)
TS = telemetry simulator
AGSS = attitude ground support system

Figure 5-3. Improvements in Product—Reuse

Figure 5-4 shows the results of the organization’s process improvement prograproaucs in
the area of software developmenst. This figure showshat thetypical missioncost (todeliver

59 SEL-95-102

severalsimilar systems) has decreased by 55 percent from an averabeudf490staff-months
to about 210 staff-months.

800
High = 755
«» 600 7
<
5
S 400 Avg = ~490
S
200 1 Avg = ~210
0 Low = 98
Early Current
(1985-1989) (1990-1993)
8 similar systems 6 similar systems
supporting 4 missions: supporting 4 missions:
COBE, GOES, EUVE, SAMPEX,
GRO, UARS WIND/Polar

Figure 5-4. Improvements in Product—Cost

Figure 5-5 shows the results of the organization’s process improvement prograproaucs in
the area of developmeaycle time(i.e., the amount afime requiredfor development). Athis
figure illustratesthe average developmanyicle time has beereduced by 38 percent for both
Ada and FORTRAN projects.

Ada FORTRAN
30
28
o 207
<
g 21 16
0 Early Current Early Current
(1986-1990) (1991-1994) (1985-1990) (1991-1994)
EUVE, GOES, FAST, TOMS, COBE, EUVE FAST, TOMS,
UARS SAMPEX GOES, UARS SAMPEX

Figure 5-5. Improvements in Product—Development Cycle Time

Table 5-1 focuses aheimpact ofthe procesgnprovement program onspecific organization’s
process.Within the past decadejany facets of the organization’s procdssve evolved and

matured as a direct result of process improvement activities. Software-aelatgeds have been
integrated. Training, standards and policies, measuremenherdoption of new technologies

are no longer performed in an ad lashion; they fit intdhe three-phasenprovement approach
(understand, assess, package) wondk together to meet therganization’s needs. Developers
become an integralart of theimprovement process as they see their experience drawn upon and
packaged for subsequent use. Software becomes process driven and less people driven. The three-
phase approach also focuses the role of softemagaeeringresearchThis research becomes

SEL-95-102 60

driven bythe problems and goals dhe organization, and raechanism is in placéor the

experimentation, assessment, and adoption of new technologies.

Table 5-1. Impacts to Software Process

Early to Mid 1980s Mid to Late 1980s Early 1990s
Process Good Better Even Better
Standards Top-down Reflect environment Experience driven; bottom-
up
Training By organization For specific techniques | Full program based on local
experience
Measurement Overhead to process, Integrated, analysis Organization’s “way of
data driven driven doing business”
Life Cycle Waterfall Waterfall Tailorable
Inspections Code/design reading Code/design reading Focused inspections, design
plus peer reviews inspections
Research Ad hoc Sometimes product Product driven, based on
driven improvement goals
Improvement Technology Process Improvement process part
Focus of standards; integrated
experimentation and
development

As these illustrations show, this organization has derpeohtifiable benefits from its process
improvement program ithe areas afeliability, reuse, costandcycle time.lts proces$ias also
matured inmanyways. Another factor considered by the organizatighas the softwardeing
produced today ismuchmore complex than in previous years. Desthite increasedomplexity,
the organization has beeable to produce thefunctionality neededor these moreomplex
systems while improving reliability and reducing cost.

The use of a process improvement program to guide, manage, and improve processes will provide
an action-feedbacknechanisnfor recording the current performance of the organization and
observing the actu@ahpact of process changes. Contreér change is way to invest remurces

in changesthat proved to beeffective in achievinghe overall goals ofthe organization. In
general, a process improvement program should allow cooteol over what isiappening in the
organization. Thenodelsused by management to predtot behavior ofthe software processes,
their cost, use of resourcespmpliance with schedule, and effectiveness, based omternal

data andexperience. Thus, management should be balertotrust thosemodels. Based on
experience and information gained on previprugects, managers should also bddretble to
handlethe cases iwhich things danot goaccording to the predictions. Figure 5-6 demonstrates
some of these ideashis figure showshe long-term effect of procesaprovement oneliability

and demonstratdbat the organizatiohas gained kevel of manageabilitand control. Over the
years,not only hasthe averagerror rate decreased, but the bdedween thehigh and low
values hamarrowed. As a resulplanningand controlling theuality of the softwaréeing
produced have become much easier for managers within this organization.

61 SEL-95-102

A MAGBIAS

14

Linear regression:

Ada
Upper data points 4\ FORTRAN O

12

10 ISEEB Linear regression:

All data points GRCLSlM

UARSDSIM
A

Errors/KDLOC

2 Linear regression: COBEDS GROE GOESIM GROHUD

Lower data points a EUVEAGSS Bb

EUVEDSIM FASTELS

ASAMPEX

- ewvetel® sampExTs o
0 TOMSTELS
1 1 1 1 1 1 1 1

1976 1978 1980 1982 1984 1986 1988 1990 1992 1994

Project Midpoint

Figure 5-6. Long-Term Reliability Trends

Finally, especially inndustry, there is a strorgconomic motivation for the organizationtave
process improvement programs aprbve the maturity of its proces¥®Vithin the CMM
framework, for instancesontinually improving(Maturity Level 5) organizationare much more
competitive andikely to win Government contracts than thabat operate in an ad hdéashion
(Maturity Level 1). In increasinglcompetitive markets, organizations without process
improvement programs will be at a disadvantaggdse with procesgnprovement programs in
place.

5.3 Key Management Guidelines

NASA's experience in implementing software process improvement programs has resuigtd in a
of recommendations fany organization that wants to create a software prooegsovement
program. Some of those recommendationslassbns learned have already been introduced in
Chapter 4. A short summary is provided in Table 5-2.

The issue oflimiting the scope is based om0 considerations. First, because process
improvement represents, as shown in this chaptémited but significant overhead,quickly
achievingthe expectedbenefits is necessary to obtdine support needed to continue the
program.Achieving success bypplying corrections thatan be effective very quicklyroves
easier in a smaller environmeRbr instance, suppogeo manymeasures have been selected for

SEL-95-102 62

Table 5-2. Key Lessons in Starting a Process Improvement Program

Do Don’t
Limit scope (start small). Assume bigger is better.
Specify who will analyze and package (separate Assume developers can also do packaging.

from developers). .
pers) Focus on collecting data.

Produce specific products the first year (concepts,
baseline, perceived changes, software process

handbook). Promise more than you can deliver.

Ignore experience or perception of developers.

Assure developers that they drive change
(analysts are helpers).

Proceed slowly.

implementation, anthe datacollectioncosts turnout to bearger than expecte€hanging the
standards and reorganizing ttatacollection process according to tbaginal intentions are
easier in a smaller environmei&econd,delimiting is easier in a well-defined application and
organizational domain. Because predictiveralue of models and experiments is directly related
to the appropriateness of the chodemain, success is easier to achieve if this choice camlbe
delimited andcharacterized. Adhering to thisinciple will help leep the cost of thigst phase
(Understanding) low.

Developers cannot be expected to performathedysisand packaging for the software process
improvement organization. The packaging of experience is based on tenets and techniques that are
different fromthe problem-solvingapproach used in software development. Developesgn

systems and solve problems by decomposing complex issuesniplerones, based ondivide

and conquer approach. Their goal igd&diver a systenthat satisfiesthe needs fowhich it has

been designed withithe time andbudget constraints establishedtla beginningand corrected

during the projectifetime. Experiencgackaging, on thether hand, is performed bynifying

different solutions according to domapecificityand observedimilarity. The goal is to extract

from a project enougimformation to be able to effectivetguse the development experience in a
different context within the same domain.

Therefore, the processiprovement organizatiomself is composedprimarily) of two different
suborganizations, each one w#pecificgoals, products, ancheasures of success. The goal of
the development organization is deliver asoftware system, whereas the goal of dhalysis
organization is t@nalyze angbackage experiences into a foaseful tothe developmergroup.
The success of the development organization is measuredveyidglon time and withibudget

a software product thaheets the needs favhich it has been designeflhe success of the
analysisorganization is measured by #bility to provide and use in &mely way products,
processes, and informatitimatcan be used by the developers. Eygnduct from oneside (the
analysts) is derived from the specific experiences of the other side (the developers).

The separation between analysts and developers shotldhean that the experience and
perception of the developers am®dt taken into accountheir experience feeds process
improvement, and their cooperatiomakes it useful anavorth theinvestment. Although the
analysts perform themajor part of the work ircollecting and packagindata and infornt#on, the
developers are thdriving force of change. They need to recogrieevalue ofthe supporthey
receive from theanalysts. Ifthe perception existhat the activities of the analysts absorb

63 SEL-95-102

resources without providing real valude wholeanitiative will likely fail. Therefore, it is
important to get thedevelopers’ acceptance amsdpport byaiming attheir real problems,
minimizing the effort on their side, arddill giving them decisionapower over change. The
developersnayconsider measurement an annoyahagthis isnot abig problem.The important
thing is that measurement igiot perceived as dhreat. Aslong as a manager ensurtmt
measurementvill never be used toate programmers, theevelopers willtreat measurement
responsibilities as just one more task that is part of their job.

The last issue associated wilte successful development ofpaocess improvement program is
the need, on one hand, to procetmvly and, on the othemand, to producspecific products
(conceptshpaseline, perceived changssftware process handbook) as soopassible, perhaps
even in the first year of thaitiative. The personnel in charge tbk initiative should be able to
define aset ofcapabilities angbroducts that will beeady andavailablefor the organization at
specific milestones irthe program. Theseapabilities andproducts, such as providing a
characterization of the organizatiotéchnical baseline aepeating the characterization process
carriedout in aspecific domain irother contextsshould present in the most practieay the
value that the process improvement program provides for the whole organization.

SEL-95-102 64

Appendix A. Glossary of Terms

his appendixcontains definitions oferms used throughodtis document and provides
synonyms commonly used for these terms.

Analysis Organization: The organization whose focus and priority is swpport process

improvement by analyzing experiendeawn from the development organization. Emalysis

organization synthesizéise information inthe form ofpolicies, standards, training materials and,

in general, models of the product and of the process (both formal and informal).

Synonyms: Analysts, analysis and packaging element, analysis element.

Assessing Phaserhe second of the three phases in the software prmopssvement paradigm
where some change is introduced anditfgact ofthat change on both software process and
product is therdetermined. This phase is generaiipught of as thexperimentaktep inwhich
some defined change te process (e.g., the use afew set of standards, the introduction of a
new design technique) is evaluated against the baseline.

Synonym:Experimentation.

Development Organization: The organizationjncluding all the developers andaintainers,
whoseprimary objective is tgroduce software thaneets the customer’s needs tome and
within budget. Additionally, this organization must provide development information to the
analysts. It receives process and product information from the analysts andhisusgsmation

in its activities.

Synonyms:Developers, maintainergroject element, project organization, experience source,
source of data.

Packaging PhaseThe last of the three phases in the software prangg®vement paradigm
where changes that have produced satisfactory results are incorporatednmamieam of the
organization. The analysts develop new models, documents, standards, and riratenngs
based on what has been learned duringAbsessing Phase. Thoducts developed by the
analysts are stored by the suppestaff into the experience base and are provided to the
developers upon request.

Repository: The “corporate knowledge” of an organizatmmsisting of a projects database and
a library. The projects database (usually a RDBMS) contains the historical gabge¢e.g., cost,
schedule, ancerror data). Thdibrary consists of the dataollection forms, project-related
documentation fromhe developers, and the products of the anadysts as modelsgeports,
standards, policies, and handbooks.

Synonym:Experience base.

65 SEL-95-102

Software Process ImprovementThe continual and iterative improvementboth the software
process and products through the use of project experiences.

SynonymsSoftware product improvement, software process and product improvement.

Software Process Improvement Organization: An organizational structure devoted to
continually using lessonslata,and general experience from software projects to etisatre
ongoing and ensuing efforts use the experience to improve their software products and processes.

SynonymsExperience factory, experience factory organization.

Support Organization: The focal point forall the archived informatiorproduced and used
within the software processiprovement programThis group isresponsible for collecting,
quality assuringstoring, retrieving, andarchiving the data drawn from the developérkis
organization maintains the repository of development information and packaged experiences.

SynonymsSupport staff, support element, technical support, repository component.

Understanding Phase:The first of the three phases in the software progapsovement
paradigm where characteristics of the software procespraddicts arecontinually captured

within the project organization. Models, relationships, and general descriptions of the process and
products are generatetlinderstanding is the required starting point of d¢verall process
improvement sequence, and it is unending because changes must hedasiood and
characterized.

SynonymsBaselining, characterizing.

SEL-95-102 66

Abbreviations and Acronyms

AGSS
CDR
CM
CMM
COBE
DBA
DBMS
DLOC
DSN
EOS
EUVE
FAST
GOES
GQM
GRO
GSFC
IRM
V&V
JPL
KDLOC
KLOC
KSLOC
LaRC
MSLOC
NASA
OOoT

attitude ground support system
critical design review

configuration management

Capability Maturity Model

Cosmic Background Explorer
database administrator

database management system
developed lines of code

Deep Space Network

Earth Observing System

Extreme Ultraviolet Explorer

Fast Auroral Snapshot Explorer
Geostationary Operational Environmental Satellite
Goal/Question/Metric

Compton Gamma Ray Observatory
Goddard Space Flight Center
Information Resources Management
independent verification and validation
Jet Propulsion Laboratory

one thousand developed lines of code
one thousand lines of code

one thousand source lines of code
Langley Research Center

million source lines of code

National Aeronautics and Space Administration

object-oriented technology

67 SEL-95-102

Polar
QA
R&D
RDBMS
RTOP
SAMPEX
SEAL
SEI
SEL
SEPG
SLOC
SORCE
TOMS
TS
UARS
WIND

SEL-95-102

Global Geospace Science Polar Spacecraft
quality assurance
research and development

relational database management system
Research Topic Operating Plan

Solar, Anomalous, and Magnetospheric Particle Explorer
Software Engineering amdhalysisLaboratory
Software Engineering Institute

Software Engineering Laboratory

Software Engineering Process Group
source lines of code

Software Resource Center

Total Ozone Mapping Spectrometer
telemetry simulator

Upper Atmosphere Research Satellite

Global Geospace Science Wind Spacecraft

68

References

10.

11.

12.

13.

“The Software Engineering Laboratory—An Operational Experience Factory,” V. Basili,
F. McGarry, et al.Proceedings of the Fourteenth International Conference on Software
EngineeringMelbourne, Australia, May 1992

Profile of Software at the National Aeronautics and Space AdministydNibSA
Software Engineering Program, D. Hall, R. Pajerski, C. Sinclair, and B. Siegel,
NASA-RPT-004-95, April 1995

Software Engineering Laboratory Relationships, Models, and Management Rules
W. Decker, R. Hendrick, and J. Valett, SEL-91-001, NASA/GSFC, February 1991

“A Methodology for Collecting Valid Software Engineering Data,” V. R. Basili and
D. M. Weiss |EEE Transactions on Software Engineerihgpvember 1984

“An Analysis of Defect Densities Found During Software Inspections,” J. C. Kelly,
J. S. Sherif, and J. Hop&xurnal of Systems and Softwav®lume 17, Number 2,
February 1992

“Cleanroom Software Engineering,” H. D. Mills, M. Dyer, and R. C. Ling#tE
Software September 1987, pp. 19-24

The Cleanroom Case Study in the Software Engineering Laboratory: Project Description
and Early AnalysisS. Green, et al., SEL-90-002, NASA/GSFC, March 1990

“Software Process Evolution at the SEL,” V. Basili and S. Gt&#&tE SoftwareJuly
1994

“Impact of Ada in the Flight Dynamics Division: Excitement and FrustratioBailky,
S. Waligora, and M. StarBroceedings of the Eighteenth Annual Software Engineering
Workshop SEL-93-003, NASA/GSFC, December 1993

“Impacts of Object-Oriented Technologies: Seven Years of SEL Studies,” M. Stark,
Proceedings of the Conference on Object-Oriented Programming Systems, Languages,
and ApplicationsSeptember 1993

“Criteria for Software Modularization,” D. N. Card, G. Page, and F. E. McGarry,
Proceedings of the Eighth International Conference on Software EngingliengY ork:
IEEE Computer Society Press, 1985

“Comparing the Effectiveness of Testing Strategies,” V. R. Basili and R. W. |Gy,
Transactions on Software Engineerjiigpcember 1987

Software Engineering Laboratory (SEL) Cleanroom Process M8d&reen,
SEL-91-004, NASA/GSFC, November 1991

69 SEL-95-102

14.

15.

16.

17.

18.

19.

“Domain Identification for Optimizing Software Reusé,Basili, L. Briand, and
W. ThomasProceedings of the Nineteenth Annual Software Engineering Workshop
SEL-94-006, NASA/GSFC, December 1994

Capability Maturity Model for Software, Version 1M. Paulk, B. Curtis, MChrissis, and
C. Weber, Software Engineering Institute, Carnegie Mellon University,
CMU/SEI-93-TR-24, February 1993

Software Measurement GuidebpblASA Software Engineering Program, M. Bassman,
F. McGarry, R. Pajerski, et al., NASA-GB-001-94, August 1995

Software Engineering Laboratory Database Organization and User’s Guide (Revision 2)
L. Morusiewicz and J. Bristow, SEL-89-201, NASA/GSFC, October 1992

Profile of Software Within Code 500 at the GSNASA Software Engineering Program,
D. Hall and F. McGarry, NASA-RPT-001-94, April 1994

Profile of Software at the Goddard Space Flight CemM&SA Software Engineering
Program, D. Hall, F. McGarry, and C. Sinclair, NASA-RPT-002-94, June 1994

SEL-95-102 70

Index

activities
of analysts, 30, 37, 38—40
of developers, 30, 35-36
of support staff, 30, 41-43
analysts, 5-9, 30, 37-40, 45
activities, 37, 38-40
cost of, 55, 57
resources, 37
approach
to software process improvement, 5, 9-19
bottom-up, 27, 61
other approaches, 5-6, 23-28
top-down, 27, 61
assessing, 5, 14-18
Cleanroom, 17-18
inspections, 15-17
baseline, 8-14, 20, 23-27, 49-51, 63-64
producing, 45, 51
benefits, 53, 58—62
bottom-up approach, 27, 61
Capability Maturity Model, 23-28, 62
Cleanroom, 26
assessing, 17-18
packaging, 20-21
CM Seeconfiguration management
CMM SeeCapability Maturity Model
commitment
obtaining, 4648
components
of information repository, 42—43
of software process improvement organization, 5-9, 29, 42
configuration management, 56
cost of software process improvement, 54-57
cost of analysts, 55, 57
cost of support staff, 55, 56-57
overhead to developers, 55-56
database
administrator, 42—43
projects, 40, 42
developers, 5-9, 30, 34-36, 45
activities, 35-36
overhead to, 55-56

71 SEL-95-102

resources, 34
domains, 5, 6
for software process improvement, 5-6, 46
establishing
process, 45, 49
structure of software process improvement organization, 45, 49
experimentatiorseeassessing
framework
for software process improvement, 28
Goal/Question/Metric paradigm, 15
Goddard Space Flight Center, 2, 54
GSFCSeeGoddard Space Flight Center
implementation
of software process improvement program, 45-51
independent verification and validation, 8
information flow
among components, 7
information repository, 30, 33, 43
components of, 42, 43
inspections, 15, 17-18, 20, 61
assessing, 15-17
packaging, 19
Jet Propulsion Laboratory, 2, 54
JPLSeelet Propulsion Laboratory
Langley Research Center, 2, 54
LaRC Seelangley Research Center
library, 41-43
management
key guidelines, 53, 62—64
of software process improvement organization, 62—64
measurement, 2, 9-10, 15, 17-19, 25-27, 30, 41, 51, 54, 56-58, 61, 64
measures, 9, 15-17, 23, 24, 27, 32, 36, 50, 63
models, 3, 7, 14, 19, 32, 39, 30-40, 53, 58, 61, 62, 63
obtaining commitment, 46-48
operation
of software process improvement program, 31-43
starting, 45, 51
packaging, 5, 19, 18-21
Cleanroom, 20-21
inspections, 19
Phase Seeunderstanding
Phase Beeassessing
Phase FHeepackaging
process
establishing, 45, 49

SEL-95-102 72

producing baseline, 45, 51
QA Seequality assurance
quality assurance, 56
resources
analysts, 37
developers, 34
support staff, 40
SEAL SeeSoftware Engineering amkhalysisLaboratory
SEI SeeSoftware Engineering Institute
SEL SeeSoftware Engineering Laboratory
Software Engineering and Analysis Laboratory, 2-3, 54
Software Engineering Institute, 23
Software Engineering Laboratory, 2—3, 54, 55
software process improvement organization, 6, 7
Software Resource Center, 3, 54
SORCESeeSoftware Resource Center
starting operation, 45, 51
structure
of software process improvement organization, 5-9
establishing, 45, 49
of software process improvement program
example, 42
support staff, 5-9, 30, 40-43, 45
activities, 41-43
cost of, 55, 56-57
resources, 40
top-down approach, 27, 61
understanding, 5, 9-14, 32

73

SEL-95-102

